Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T10:57:05.129Z Has data issue: false hasContentIssue false

Comparative Studies on Impact of Lithium Substitution in Nano Magnesium Ferrite

Published online by Cambridge University Press:  14 May 2019

Ravi Kant
Affiliation:
Research Scholar, Shri JJT University, Jhunjhunu, Rajasthan, India
Ajay Kumar Mann*
Affiliation:
Asst. Professor, Govt. College for Women, Lakhan Majra, Rohtak, Haryana, India
*
*E-mail address: mannajay77@gmail.com (Ajay Kumar Mann)
Get access

Abstract

Lithium substituted magnesium ferrites (LixMg1-xFe2O4, where x = 0.1 to 0.5) were synthesized by solid state reaction method. Various characterization techniques viz. X - Ray Diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and fourier transform infrared spectroscopy (FTIR) were used to study the effect of lithium substitution. Differences in particle size, crystallinity and magnetic parameters of the ferrites synthesized with difference in composition were observed. XRD patterns of the synthesized samples confirmed phase purity and showed that the lattice parameter decreases with increase in Li content in magnesium ferrite. Decrease in coercivity with increase in lithium concentration was observed from magnetic analysis (VSM). Through FTIR, it was observed that Li+ ions occupy B – sites. FTIR spectrum peaks obtained in the region 1620 – 1670 cm-1 supported water molecule dissociation. It is the required characteristic of the lithium substituted magnesium ferrite to be used in various applications like humidity sensor and hydroelectric cell.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kikukawa, N., Takemori, M., Nagano, Y., Sugasawa, M. and Kobayashi, S., J. Magn. Magn. Mater. 284, 206 (2004).CrossRefGoogle Scholar
Poddar, P., Srikanth, H., Morrison, S.A. and Carpenter, E.E., J. Magn. Magn. Mater. 288, 443 (2005).CrossRefGoogle Scholar
Mohammed, K. A., Al- Rawas, A. D., Gismelseed, A. M., Sellai, A., Widatallah, H. M., Yousif, A. and Elazain, M. E., Physica B 407, 795 (2012).CrossRefGoogle Scholar
Shah, J. and Kotnala, R. K., Sensors and Actuators B 171–172, 832 (2012).CrossRefGoogle Scholar
Kawade, V.B., Bichile, G.K., Jadhav, K.M., Mater. Lett. 42, 33 (2000).CrossRefGoogle Scholar
Oliver, S.A., Wiley, R.J., Hamdeh, H.H., Oliveri, G. and Busca, G., Scr. Mater. 33, 1695 (1995).CrossRefGoogle Scholar
Busca, G., Finnichio, E., Lorenzilli, V., Trombetta, M. and Rossini, S.A., J. Chem. Soc. Faraday Trans. 92, 4687 (1996).CrossRefGoogle Scholar
Deraz, N.M. and Alarifi, A., J. Analyt. Appl. Pyrolysis 97, 55 (2012).CrossRefGoogle Scholar
Bamzai, K.K., Kour, G., Kaur, B. and Kulkarni, S., J. Magn. Mater. 327, 159 (2013).CrossRefGoogle Scholar
Masti, S.A., Sharma, A.K. and Vasambekar, P.N., Euro. J. Appl. Eng. Sci. Res. 3(1), 9 (2014).Google Scholar
Bamzai, K.K., Kour, G., Kaur, B. and Kulkarni, S.D., Journal of Materials, 184340 (2014).Google Scholar
Ahmad, S.I., Kumar, D.R., Syed, L.A., Satar, R. and Ansari, S.A., Arab. J. Sci. Eng, 42, 389 (2017).CrossRefGoogle Scholar
Yun, He, Yang, X., Lin, J., Lin, Q. and Dong, J., Journal of Nanomaterials 1, 1 (2015). DOI 10.1155/2015/854840.CrossRefGoogle Scholar
Kim, K.S., Han, S.H. and Kim, H.G., Journal of the Korean Physical Society 54(2), 886 (2009).CrossRefGoogle Scholar
Das, M.K., Rahman, M.M., Sonia, B.M., Ahmed, F., Hossain, Md. A., Rahaman, M., Bashar, M.S., Hossain, T., Saha, D.K. and Akhter, S., Advanced Chemistry Letters 1, 1(2013).CrossRefGoogle Scholar
Liu, C., Zou, B., Rondinone, A.J. and Zhang, Z.J., Journal of the Americal Chemical Society 122(26), 6263 (2000).CrossRefGoogle Scholar
Kotnala, R.K., Shah, J., Singh, B., Kishan, H., Singh, S., Dhawan, S.K. and Sengupta, A., Sensors and Actuators, B 129, 909 (2008).CrossRefGoogle Scholar
Kotnala, R.K. and Shah, J., Int. J. Energy Res. 40, 1652 (2016).CrossRefGoogle Scholar
Kundu, T.K and Mishra, S., Bull. Mater. Sci. 31(3), 507 (2008).CrossRefGoogle Scholar
Snelling, E.C., Proceedings of Fifth International Conference on Ferrites (ICF-5) India, 579 (1989).Google Scholar
Kovtunenko, P.V., Glass and Ceramics, 54, 56 (1997).Google Scholar
Rahman, S., Nadeem, K., Rehman, M.A., Mumtaz, M. and Papst, I.L., Ceram. Int. 39, 5235 (2013).CrossRefGoogle Scholar
Praveena, K., Sadhana, K. and Virk, H.S.,Solid State Phenomena, 232, 45 (2015).CrossRefGoogle Scholar