Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:53:39.499Z Has data issue: false hasContentIssue false

Characterization of PbS thin films obtained by chemical bath at low temperature using sodium citrate as complexing agent

Published online by Cambridge University Press:  23 May 2016

David Ramírez-Ceja
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila, México.
Luis A. González*
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila, México.
José Escorcia-García
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila, México.
Arturo I. Martínez-Enríquez
Affiliation:
Centro de Investigación y de Estudios Avanzados del IPN, Unidad Saltillo, Av. Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila, México.
Get access

Abstract

The deposition of PbS thin films by the chemical bath deposition method using sodium citrate as non-toxic complexing agent is presented. As-deposited PbS films and those annealed at 200 and 300 °C in argon atmosphere were formed by tightly compact spherical particles homogeneously distributed along the substrates. The XRD analysis shows that all the films had a galena type cubic crystalline structure. The crystallite size of the as-deposited film was 17 nm which decreased to 14 nm when the film was annealed to 300 °C. Thermal treatments to the films produced a shift of the optical band gap from 1.34 to 1.49 eV. Furthermore, the as-deposited PbS films were photosensitive showing a conductivity of 10-2 Ω-1 cm-1 under illumination. Such a conductivity increased to 10-1 Ω-1 cm-1 with the thermal treatment at 200 °C. The evaluation of the PbS film using a CdS thin film partner as window in the solar cell configuration showed an open circuit voltage of 88 mV and a short current density of 3.5 mA/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Prog. Photovolt: Res. Appl. 23, 805 (2015).Google Scholar
Tao, C. S., Jiang, J., and Tao, M., Sol. Energ. Mat. Sol. C. 95, 3176 (2011).Google Scholar
Yeon, D. H., Lee, S. M., Jo, Y. H., Moon, J., and Cho, Y. S., J. Mater. Chem. A. 2, 20112 (2014).Google Scholar
Hernández-Borja, J., Vorobiev, Y. V., and Ramírez-Bon, R., Sol. Energ. Mat. Sol. C. 95, 1882 (2011).Google Scholar
Yang, Y. J. and Hu, S., Thin Solid Films 516, 6048 (2008).Google Scholar
Hodes, G., in Chemical Solution Deposition of Semiconductor Films. (Marcel Dekker, Inc., New York, 2003) p. 50.Google Scholar
Rempel, A. A., Kozhevnikova, N. S., Leenaers, A. J. G., and Van den Berghe, S., J. Cryst. Growth 280, 300 (2005).Google Scholar
Nair, P. K., Mair, M. T. S., García, V. M., Arenas, O. L., Peña, Y., Campos, J., Hu, H., Suaréz, R. and Rincón, M. E., Sol. Energ. Mat. Sol. 52, 313 (1998).Google Scholar
Mohamed, H. A., Sol. Energy 108, 360 (2014).Google Scholar
Schroder, D. K., in Semiconductor Material and Device Characterization, (Jhon Wiley, New Jersey, 2006) p. 587.Google Scholar
Patel, J., Mighri, F., Ajji, A., Devendra, T., and Tapas K., C., Appl. Phys. A 117, 1791 (2014).Google Scholar
Lai, L.-H., Speirs, M.J., Chang, F.-K., Piveteau, L., Kovalenko, M.K., Chen, J.-S., Wu, J.-J., and Loi, M.A., Appl. Phys. Lett. 107, 183901 (2015).Google Scholar