Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:35:50.780Z Has data issue: false hasContentIssue false

Bottom-Up Approaches for Precisely Nanostructuring Hybrid Organic/Inorganic Multi-Component Composites for Organic Photovoltaics

Published online by Cambridge University Press:  13 April 2020

Lingyao Meng
Affiliation:
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States.
Hongyou Fan
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States.
J. Matthew D. Lane
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico, United States.
Yang Qin*
Affiliation:
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico, United States.
Get access

Abstract:

Achieving control over the morphology of conjugated polymer (CP) blends at nanoscale is crucial for enhancing their performances in diverse organic optoelectronic devices, including thin film transistors, photovoltaics, and light emitting diodes. However, the complex CP chemical structures and intramolecular interactions often make such control difficult to implement. We demonstrate here that cooperative combination of non-covalent interactions, including hydrogen bonding, coordination interactions, and π-π interactions, etc., can be used to effectively define the morphology of CP blend films, in particular being able to achieve accurate spatial arrangement of nanoparticles within CP nanostructures. Through UV-vis absorption spectroscopy and transmission electron microscopy, we show strong attachment of fullerene molecules, CdSe quantum dots, and iron oxide nanoparticles, onto well-defined CP nanofibers. The resulting core/shell hybrid nanofibers exhibit well-defined donor/acceptor interface when employed in photovoltaic devices, which also contributes to enhanced charge separation and transport. These findings provide a facile new methodology of improving CP/nanoparticle interfacial properties and controlling blend morphology. The generality of this methodology demonstrated in current studies points to a new way of designing hybrid materials based on organic polymers and inorganic nanoparticles towards applications in modern electronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Horowitz, G., Adv. Mater. 10, 365 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
Facchetti, A., Mater. Today 10, 28 (2007).CrossRefGoogle Scholar
Wang, C., Dong, H., Hu, W., Liu, Y. and Zhu, D., Chem. Rev. 112, 2208 (2012).CrossRefGoogle Scholar
Thompson, B. C. and Fréchet, J. M., Angew. Chem. 47, 58 (2008).CrossRefGoogle Scholar
Dennler, G., Scharber, M. C. and Brabec, C. J., Adv. Mater. 21, 1323 (2009).CrossRefGoogle Scholar
Cheng, Y.-J., Yang, S.-H. and Hsu, C.-S., Chem. Rev. 109, 5868 (2009).CrossRefGoogle Scholar
Chen, J. and Cao, Y., Acc. Chem. Res 42, 1709 (2009).CrossRefGoogle Scholar
Brabec, C. J., Gowrisanker, S., Halls, J. J., Laird, D., Jia, S. and Williams, S. P., Adv. Mater. 22, 3839 (2010).CrossRefGoogle Scholar
AlSalhi, M. S., Alam, J., Dass, L. A. and Raja, M., Int. J. Mol. Sci. 12, 2036 (2011).CrossRefGoogle Scholar
Friend, R., Gymer, R., Holmes, A., Burroughes, J., Marks, R., Taliani, C., Bradley, D., Dos Santos, D., Bredas, J. and Lögdlund, M., Nature 397, 121 (1999).CrossRefGoogle Scholar
Nielsen, T. D., Cruickshank, C., Foged, S., Thorsen, J. and Krebs, F. C., Sol. Energy Mater. Sol. Cells 94, 1553 (2010).CrossRefGoogle Scholar
Jørgensen, M., Carlé, J. E., Søndergaard, R. R., Lauritzen, M., Dagnæs-Hansen, N. A., Byskov, S. L., Andersen, T. R., Larsen-Olsen, T. T., Böttiger, A. P. and Andreasen, B., Sol. Energy Mater. Sol. Cells 119, 84 (2013).CrossRefGoogle Scholar
Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
Halls, J., Walsh, C., Greenham, N. C., Marseglia, E., Friend, R. H., Moratti, S. and Holmes, A., Nature 376, 498 (1995).CrossRefGoogle Scholar
Yu, G. and Heeger, A. J., J. Appl. Phys. 78, 4510 (1995).CrossRefGoogle Scholar
Facchetti, A., Mater. Today 16, 123 (2013).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F. and Heeger, A. J., Science 270, 1789 (1995).CrossRefGoogle Scholar
Anthony, J. E., Facchetti, A., Heeney, M., Marder, S. R. and Zhan, X., Adv. Mater. 22, 3876 (2010).CrossRefGoogle Scholar
Huynh, W. U., Dittmer, J. J. and Alivisatos, A. P., Science 295, 2425 (2002).CrossRefGoogle Scholar
Sun, B., Marx, E. and Greenham, N. C., Nano Lett . 3, 961 (2003).CrossRefGoogle Scholar
Beek, W. J., Wienk, M. M., Kemerink, M., Yang, X. and Janssen, R. A., J. Phys. Chem. B 109, 9505 (2005).CrossRefGoogle Scholar
Li, S.-S. and Chen, C.-W., J. Mater. Chem. A 1, 10574 (2013).CrossRefGoogle Scholar
Halls, J. J., Pichler, K., Friend, R. H., Moratti, S. and Holmes, A., Appl. Phys. Lett. 68, 3120 (1996).CrossRefGoogle Scholar
Huang, Y., Kramer, E. J., Heeger, A. J. and Bazan, G. C., Chem. Rev. 114, 7006 (2014).CrossRefGoogle Scholar
Brabec, C. J., Heeney, M., McCulloch, I. and Nelson, J., Chem. Soc. Rev. 40, 1185 (2011).CrossRefGoogle Scholar
Yang, X., Loos, J., Veenstra, S. C., Verhees, W. J., Wienk, M. M., Kroon, J. M., Michels, M. A. and Janssen, R. A., Nano Lett . 5, 579 (2005).CrossRefGoogle Scholar
Tang, H., Lu, G., Li, L., Li, J., Wang, Y. and Yang, X., J. Mater. Chem. 20, 683 (2010).CrossRefGoogle Scholar
Peet, J., Kim, J. Y., Coates, N. E., Ma, W. L., Moses, D., Heeger, A. J. and Bazan, G. C., Nat. Mater. 6, 497 (2007).CrossRefGoogle Scholar
Samitsu, S., Shimomura, T., Heike, S., Hashizume, T. and Ito, K., Macromolecules 43, 7891 (2010).CrossRefGoogle Scholar
Niles, E. T., Roehling, J. D., Yamagata, H., Wise, A. J., Spano, F. C., Moulé, A. J. and Grey, J. K., J. Phys. Chem. Lett. 3, 259 (2012).CrossRefGoogle Scholar
Ihn, K. J., Moulton, J. and Smith, P., J. Polym. Sci. 31, 735 (1993).CrossRefGoogle Scholar
Kiriy, N., Jähne, E., Adler, H.-J., Schneider, M., Kiriy, A., Gorodyska, G., Minko, S., Jehnichen, D., Simon, P. and Fokin, A. A., Nano Lett . 3, 707 (2003).CrossRefGoogle Scholar
Samitsu, S., Shimomura, T., Heike, S., Hashizume, T. and Ito, K., Macromolecules 41, 8000 (2008).CrossRefGoogle Scholar
Roehling, J. D., Arslan, I. and Moulé, A. J., J. Mater. Chem. 22, 2498 (2012).CrossRefGoogle Scholar
Xu, W., Li, L., Tang, H., Li, H., Zhao, X. and Yang, X., J. Phys. Chem. B 115, 6412 (2011).CrossRefGoogle Scholar
Berson, S., De Bettignies, R., Bailly, S. and Guillerez, S., Adv. Funct. Mater. 17, 1377 (2007).CrossRefGoogle Scholar
Xin, H., Kim, F. S. and Jenekhe, S. A., J. Am. Chem. Soc. 130, 5424 (2008).CrossRefGoogle Scholar
Kim, J. S., Lee, J. H., Park, J. H., Shim, C., Sim, M. and Cho, K., Adv. Funct. Mater. 21, 480 (2011).CrossRefGoogle Scholar
Kim, J.-H., Kim, M., Jinnai, H., Shin, T. J., Kim, H., Park, J. H., Jo, S. B. and Cho, K., ACS Appl. Mater. Interfaces 6, 5640 (2014).CrossRefGoogle Scholar
Sommer, M., Huettner, S. and Thelakkat, M., J. Mater. Chem. 20, 10788 (2010).CrossRefGoogle Scholar
Miyanishi, S., Zhang, Y., Tajima, K. and Hashimoto, K., ChemComm 46, 6723 (2010).Google Scholar
Topham, P. D., Parnell, A. J. and Hiorns, R. C., J. Polym. Sci. 49, 1131 (2011).CrossRefGoogle Scholar
Botiz, I., Schaller, R. D., Verduzco, R. and Darling, S. B., J. Phys. Chem. C 115, 9260 (2011).CrossRefGoogle Scholar
Verduzco, R., Botiz, I., Pickel, D. L., Kilbey, S. M., Hong, K., Dimasi, E. and Darling, S. B., Macromolecules 44, 530 (2011).CrossRefGoogle Scholar
Ramos, A. M., Rispens, M. T., van Duren, J. K., Hummelen, J. C. and Janssen, R. A., J. Am. Chem. Soc. 123, 6714 (2001).CrossRefGoogle Scholar
Zhang, F., Svensson, M., Andersson, M. R., Maggini, M., Bucella, S., Menna, E. and Inganäs, O., Adv. Mater. 13, 1871 (2001).3.0.CO;2-3>CrossRefGoogle Scholar
Tan, Z. a., Hou, J., He, Y., Zhou, E., Yang, C. and Li, Y., Macromolecules 40, 1868 (2007).CrossRefGoogle Scholar
Li, M., Xu, P., Yang, J. and Yang, S., J. Mater. Chem. 20, 3953 (2010).CrossRefGoogle Scholar
Lai, Y. C., Ohshimizu, K., Takahashi, A., Hsu, J. C., Higashihara, T., Ueda, M. and Chen, W. C., J. Polym. Sci. 49, 2577 (2011).CrossRefGoogle Scholar
Chen, L., Peng, S. and Chen, Y., ACS Appl. Mater. Interfaces 6, 8115 (2014).CrossRefGoogle Scholar
Yao, K., Chen, L., Li, F., Wang, P. and Chen, Y., J. Phys. Chem. C 116, 714 (2012).CrossRefGoogle Scholar
Lin, Y., Lim, J. A., Wei, Q., Mannsfeld, S. C., Briseno, A. L. and Watkins, J. J., Chem. Mater. 24, 622 (2012).CrossRefGoogle Scholar
Yen, W.-C., Lee, Y.-H., Lin, J.-F., Dai, C.-A., Jeng, U.-S. and Su, W.-F., Langmuir 27, 109 (2011).CrossRefGoogle Scholar
Palaniappan, K., Hundt, N., Sista, P., Nguyen, H., Hao, J., Bhatt, M. P., Han, Y. Y., Schmiedel, E. A., Sheina, E. E. and Biewer, M. C., J. Polym. Sci. 49, 1802 (2011).CrossRefGoogle Scholar
Li, F., Shi, Y., Yuan, K. and Chen, Y., New J. Chem. 37, 195 (2013).CrossRefGoogle Scholar
Li, F., Yang, J. and Qin, Y., J. Polym. Sci. 51, 3339 (2013).CrossRefGoogle Scholar
Li, F., Yager, K. G., Dawson, N. M., Yang, J., Malloy, K. J. and Qin, Y., Macromolecules 46, 9021 (2013).CrossRefGoogle Scholar
Li, F., Yager, K. G., Dawson, N. M., Jiang, Y.-B., Malloy, K. J. and Qin, Y., Chem. Mater. 26, 3747 (2014).CrossRefGoogle Scholar
Watson, B. W., Meng, L., Fetrow, C. and Qin, Y., Polymers 8, 408 (2016).CrossRefGoogle Scholar
Shallcross, R. C., Chawla, G. S., Marikkar, F. S., Tolbert, S., Pyun, J. and Armstrong, N. R., ACS Nano 3, 3629 (2009).CrossRefGoogle Scholar
Xu, Z., Shen, C., Hou, Y., Gao, H. and Sun, S., Chem. Mater. 21, 1778 (2009).CrossRefGoogle Scholar
Sheina, E. E., Liu, J., Iovu, M. C., Laird, D. W. and McCullough, R. D., Macromolecules 37, 3526 (2004).CrossRefGoogle Scholar
Iovu, M. C., Sheina, E. E., Gil, R. R. and McCullough, R. D., Macromolecules 38, 8649 (2005).CrossRefGoogle Scholar
Yokozawa, T. and Yokoyama, A., Chem. Rev. 109, 5595 (2009).CrossRefGoogle Scholar
Li, L., Lu, G. and Yang, X., J. Mater. Chem. 18, 1984 (2008).CrossRefGoogle Scholar
Sun, S., Salim, T., Wong, L. H., Foo, Y. L., Boey, F. and Lam, Y. M., J. Mater. Chem. 21, 377 (2011).CrossRefGoogle Scholar
Spano, F. C., Chem. Phys. 325, 22 (2006).CrossRefGoogle Scholar
Spano, F. C., Acc. Chem. Res 43, 429 (2010).CrossRefGoogle Scholar
Zen’kevich, E., Sagun, E., Yarovoi, A., Shul’ga, A., Knyukshto, V., Stupak, A. and Von Borczyskowski, C., Opt. Spectrosc. 103, 958 (2007).CrossRefGoogle Scholar
Harris, R. D., Bettis Homan, S., Kodaimati, M., He, C., Nepomnyashchii, A. B., Swenson, N. K., Lian, S., Calzada, R. and Weiss, E. A., Chem. Rev. 116, 12865 (2016).CrossRefGoogle Scholar
Boles, M. A., Ling, D., Hyeon, T. and Talapin, D. V., Nat. Mater. 15, 141 (2016).CrossRefGoogle Scholar