Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:52:41.234Z Has data issue: false hasContentIssue false

Biphenyl-bridged wrinkled mesoporous silica nanoparticles for radioactive iodine capture

Published online by Cambridge University Press:  11 February 2019

Alexander T. Brown
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX75080, USA
Jason Lin
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX75080, USA
Milana C. Thomas
Affiliation:
Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX75080, USA
Yves J. Chabal
Affiliation:
Department of Materials Science and Engineering, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX75080, USA
Kenneth J. Balkus Jr*
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX75080, USA
*
Get access

Abstract

The capture of volatile radioactive iodine-129 is an important process for nuclear fission. Biphenyl-bridged wrinkled mesoporous silica shows similar performance for iodine sequestration to commercial Ag-mordenite and avoids the use of expensive silver. The biphenyl-wrinkled mesoporous silica nanoparticles function as a scaffold for biphenyl groups and also as a fluorescent indicator for the loading of iodine. The nanoparticles have a surface area of 973 m2/g and the biphenyl molecules form an electron charge-transfer complex with iodine. Iodine was loaded into the biphenyl-bridged wrinkled mesoporous silica (BWMS) at 19 ± 0.2 % loading by mass.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Riley, B.J., Vienna, J.D., Strachan, D.M., McCloy, J.S. and Jerden, J.L.: J Nucl Mater 470, 307 (2016).CrossRefGoogle Scholar
Pham, T.C.T., Docao, S., Hwang, I.C., Song, M.K., Choi, D.Y., Moon, D., Oleynikov, P. and Yoon, K.B.: Energy Environ. Sci. 9, 1050 (2016).CrossRefGoogle Scholar
Liao, Y., Weber, J., Mills, B.M., Ren, Z. and Faul, C.F.J.: Macromolecules 49, 6322 (2016).CrossRefGoogle Scholar
Li, B., Dong, X., Wang, H., Ma, D., Tan, K., Jensen, S., Deibert, B.J., Butler, J., Cure, J., Shi, Z., Thonhauser, T., Chabal, Y.J., Han, Y. and Li, J.: Nature Comm. 8, 485 (2017).CrossRefGoogle Scholar
Yang, J.H., Cho, Y.-J., Shin, J.M. and Yim, M.-S.: J Nucl Mater 465, 556 (2015).CrossRefGoogle Scholar
Harijan, D. K. L., Chandra, V., Yoon, T., Kim, K. S.: J. Hazard. Mater. 344, 576 (2018).CrossRefGoogle Scholar
Mahdi, E.M., Chaudhuri, A. K., Chong, J. C.: Mol.Syst. Des. Eng. 1, 122 (2016).CrossRefGoogle Scholar
Munaweera, I., Trinh, M., Hong, J. and Balkus, K.J.: J. Nanosci. Nanotechnol. 16, 9063 (2016).CrossRefGoogle Scholar
Gogoi, P., Mohan, U., Borpuzari, M.P., Boruah, A. and Baruah, S.K.: J Mol Struct 1131, 114 (2017).CrossRefGoogle Scholar
Delaney, P., Healy, R.M., Hanrahan, J.P., Gibson, L.T., Wenger, J.C., Morris, M.A. and Holmes, J.D.: J Environ Monit 12, 2244 (2010).CrossRefGoogle Scholar
Maity, A. and Polshettiwar, V.: ChemSusChem 10, 3866 (2017).CrossRefGoogle Scholar
Wang, R., Habib, E. and Zhu, X.X.: Dent Mater 33, 1139 (2017).CrossRefGoogle Scholar
Scott, S.M., Hu, T., Yao, T., Xin, G. and Lian, J.: Carbon 90, 1 (2015).CrossRefGoogle Scholar
Khung, Y.L., Ngalim, S.H., Scaccabarozzi, A. and Narducci, D.: Beilstein J. Nanotechnol. 6, 19 (2015).CrossRefGoogle Scholar
Contarini, S., Howlett, S.P., Rizzo, C. and De Angelis, B.A.: Appl Surf Sci 51, 177 (1991).CrossRefGoogle Scholar