Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T08:17:48.114Z Has data issue: false hasContentIssue false

Beyond Expectation: Advanced Materials Design, Synthesis, and Processing to Enable Novel Ferroelectric Properties and Applications

Published online by Cambridge University Press:  08 September 2020

Jieun Kim
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720
Eduardo Lupi
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720
David Pesquera
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720 Catalan Institute of Nanoscience and Nanotechnology, Campus UAB, Bellaterra, 08193Barcelona, Spain
Megha Acharya
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
Wenbo Zhao
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720
Gabriel A. P. Velarde
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720
Sinead Griffin
Affiliation:
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720
Lane W. Martin
Affiliation:
Department of Materials Science & Engineering, University of California, Berkeley, Berkeley, CA94720 Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720
Get access

Abstract

Ferroelectrics and related materials (e.g., non-traditional ferroelectrics such as relaxors) have long been used in a range of applications, but with the advent of new ways of modeling, synthesizing, and characterizing these materials, continued access to astonishing breakthroughs in our fundamental understanding come each year. While we still rely on these materials in a range of applications, we continue to re-write what is possible to be done with them. In turn, assumptions that have underpinned the use and design of certain materials are progressively being revisited. This perspective aims to provide an overview of the field of ferroelectric/relaxor/polar-oxide thin films in recent years, with an emphasis on emergent structure and function enabled by advanced synthesis, processing, and computational modeling.

Type
Review Article
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hlinka, J., J. Adv. Dielect. 02, 1241006 (2012).CrossRefGoogle Scholar
Takenaka, H., Grinberg, I., Liu, S., and Rappe, A. M., Nature 546, 391 (2017).CrossRefGoogle Scholar
Krogstad, M. J., Gehring, P. M., Rosenkranz, S., Osborn, R., Ye, F., Liu, Y., Ruff, J. P. C., Chen, W., Wozniak, J. M., Luo, H., Chmaissem, O., Ye, Z.-G., and Phelan, D., Nat. Mater. 17, 718 (2018).CrossRefGoogle Scholar
Kim, J., Takenaka, H., Qi, Y., Damodaran, A. R., Fernandez, A., Gao, R., McCarter, M. R., Saremi, S., Chung, L., Rappe, A. M., and Martin, L. W., Adv. Mater. 31, 1901060 (2019).CrossRefGoogle Scholar
Carreaud, J., Gemeiner, P., Kiat, J. M., Dkhil, B., Bogicevic, C., Rojac, T., and Malic, B., Phys. Rev. B 72, 174115 (2005).CrossRefGoogle Scholar
Fernandez, A., Kim, J., Meyers, D., Saremi, S., and Martin, L. W., Phys. Rev. B 101, 094102 (2020).CrossRefGoogle Scholar
Li, F., Cabral, M. J., Xu, B., Cheng, Z., Dickey, E. C., LeBeau, J. M., Wang, J., Luo, J., Taylor, S., Hackenberger, W., Bellaiche, L., Xu, Z., Chen, L.-Q., Shrout, T. R., and Zhang, S., Science 364, 264 (2019).CrossRefGoogle Scholar
Kumar, A., Dhall, R., and LeBeau, J. M., Microsc. Microanal. 25, 1838 (2019).CrossRefGoogle Scholar
Li, F., Lin, D., Chen, Z., Cheng, Z., Wang, J., Li, C., Xu, Z., Huang, Q., Liao, X., Chen, L.-Q., Shrout, T. R., and Zhang, S., Nat. Mater. 17, 349 (2018).CrossRefGoogle Scholar
Qiu, C., Wang, B., Zhang, N., Zhang, S., Liu, J., Walker, D., Wang, Y., Tian, H., Shrout, T. R., Xu, Z., Chen, L.-Q., and Li, F., Nature 577, 350 (2020).CrossRefGoogle Scholar
Pandya, S., Wilbur, J., Kim, J., Gao, R., Dasgupta, A., Dames, C., and Martin, L. W., Nat. Mater. 17, 432 (2018).CrossRefGoogle Scholar
Pandya, S., Velarde, G., Zhang, L., Wilbur, J. D., Smith, A., Hanrahan, B., Dames, C., and Martin, L. W., NPG Asia Mater. 11, 26 (2019).CrossRefGoogle Scholar
Pan, H., Li, F., Liu, Y., Zhang, Q., Wang, M., Lan, S., Zheng, Y., Ma, J., Gu, L., Shen, Y., Yu, P., Zhang, S., Chen, L.-Q., Lin, Y.-H., and Nan, C.-W., Science 365, 578 (2019).CrossRefGoogle Scholar
Kim, J., Saremi, S., Acharya, M., Velarde, G., Parsonnet, E., Donahue, P., Qualls, A., Garcia, D., and Martin, L., Science 369, 81 (2020).CrossRefGoogle Scholar
Alberi, K., Nardelli, M. B., Zakutayev, A., Mitas, L., Curtarolo, S., Jain, A., Fornari, M., Marzari, N., Takeuchi, I., Green, M. L., Kanatzidis, M., Toney, M. F., Butenko, S., Meredig, B., Lany, S., Kattner, U., Davydov, A., Toberer, E. S., Stevanovic, V., Walsh, A., Park, N.-G., Aspuru-Guzik, A., Tabor, D. P., Nelson, J., Murphy, J., Setlur, A., Gregoire, J., Li, H., Xiao, R., Ludwig, A., Martin, L. W., Rappe, A. M., Wei, S.-H., and Perkins, J., J. Phys. D: Appl. Phys. 52, 013001 (2019).CrossRefGoogle Scholar
Garrity, K. F., Phys. Rev. B 97, 024115 (2018).CrossRefGoogle Scholar
Capillas, C., Tasci, E. S., de la Flor, G., Orobengoa, D., Perez-Mato, J. M., and Aroyo, M. I., Zeitschrift Für Kristallographie 226, 186 (2011).CrossRefGoogle Scholar
Bennett, J. W. and Rabe, K. M., J. Sol. St. Chem. 195, 21 (2012).CrossRefGoogle Scholar
Ghosez, Ph., Gonze, X., and J.-Michenaud, P., GFER 186, 73 (1996).CrossRefGoogle Scholar
Cohen, R. E., Nature 358, 136 (1992).CrossRefGoogle Scholar
Heron, J. T., Schlom, D. G., and Ramesh, R., Appl. Phys. Rev. 1, 021303 (2014).CrossRefGoogle Scholar
Boström, H. L. B., Senn, M. S., and Goodwin, A. L., Nat. Commun. 9, 2380 (2018).CrossRefGoogle Scholar
Hatch, D. M. and Stokes, H. T., J. Appl. Crystallogr. 36, 951 (2003).CrossRefGoogle Scholar
Stroppa, A., Barone, P., Jain, P., Perez-Mato, J. M., and Picozzi, S., Adv. Mater. 25, 2284 (2013).CrossRefGoogle Scholar
Van Aken, B. B., Palstra, T. T. M., Filippetti, A., and Spaldin, N. A., Nat. Mater. 3, 164 (2004).CrossRefGoogle Scholar
Barrozo, P., Småbråten, D. R., Tang, Y., Prasad, B., Saremi, S., Ozgur, R., Thakare, V., Steinhardt, R. A., Holtz, M. E., Stoica, V. A., Martin, L. W., Schlom, D. G., Selbach, S. M., and Ramesh, R., Adv. Mater. 2000508 (2020).CrossRefGoogle Scholar
Mulder, A. T., Benedek, N. A., Rondinelli, J. M., and Fennie, C. J., Adv. Funct. Mater. n/a (2013).Google Scholar
Benedek, N. A., Inorg. Chem. 53, 3769 (2014).CrossRefGoogle Scholar
Bousquet, E., Dawber, M., Stucki, N., Lichtensteiger, C., Hermet, P., Gariglio, S., Triscone, J.-M., and Ghosez, P., Nature 452, 732 (2008).CrossRefGoogle Scholar
Tinte, S., Rabe, K. M., and Vanderbilt, D., Phys. Rev. B 68, 144105 (2003).CrossRefGoogle Scholar
Wang, J., Wylie-van Eerd, B., Sluka, T., Sandu, C., Cantoni, M., Wei, X.-K., Kvasov, A., McGilly, L. J., Gemeiner, P., Dkhil, B., Tagantsev, A., Trodahl, J., and Setter, N., Nat. Mater. 14, 985 (2015).CrossRefGoogle Scholar
Shi, Y., Guo, Y., Wang, X., Princep, A. J., Khalyavin, D., Manuel, P., Michiue, Y., Sato, A., Tsuda, K., Yu, S., Arai, M., Shirako, Y., Akaogi, M., Wang, N., Yamaura, K., and Boothroyd, A. T., Nat. Mater. 12, 1024 (2013).CrossRefGoogle Scholar
Benedek, N. A. and Birol, T., J. Mater. Chem. C 4, 4000 (2016).Google Scholar
Cao, Y., Wang, Z., Park, S. Y., Yuan, Y., Liu, X., Nikitin, S. M., Akamatsu, H., Kareev, M., Middey, S., Meyers, D., Thompson, P., Ryan, P. J., Shafer, P., N'Diaye, A., Arenholz, E., Gopalan, V., Zhu, Y., Rabe, K. M., and Chakhalian, J., Nat. Commun. 9, 1547 (2018).CrossRefGoogle Scholar
Filippetti, A., Fiorentini, V., Ricci, F., Delugas, P., and Íñiguez, J., Nat. Commun. 7, 11211 (2016).CrossRefGoogle Scholar
Puggioni, D. and Rondinelli, J. M., Nat. Commun. 5, 3432 (2014).CrossRefGoogle Scholar
Sergienko, I. A., Keppens, V., McGuire, M., Jin, R., He, J., Curnoe, S. H., Sales, B. C., Blaha, P., Singh, D. J., Schwarz, K., and Mandrus, D., Phys. Rev. Lett. 92, 065501 (2004).CrossRefGoogle Scholar
Kim, T. H., Puggioni, D., Yuan, Y., Xie, L., Zhou, H., Campbell, N., Ryan, P. J., Choi, Y., Kim, J.-W., Patzner, J. R., Ryu, S., Podkaminer, J. P., Irwin, J., Ma, Y., Fennie, C. J., Rzchowski, M. S., Pan, X. Q., Gopalan, V., Rondinelli, J. M., and Eom, C. B., Nature 533, 68 (2016).CrossRefGoogle Scholar
Edelstein, V. M., Phys. Rev. Lett. 75, 2004 (1995).CrossRefGoogle Scholar
Shekhar, C., Nayak, A. K., Sun, Y., Schmidt, M., Nicklas, M., Leermakers, I., Zeitler, U., Skourski, Y., Wosnitza, J., Liu, Z., Chen, Y., Schnelle, W., Borrmann, H., Grin, Y., Felser, C., and Yan, B., Nat. Phys. 11, 645 (2015).CrossRefGoogle Scholar
Tao, L. L. and Tsymbal, E. Y., Nat. Commun. 9, 2763 (2018).CrossRefGoogle Scholar
He, J., Di Sante, D., Li, R., Chen, X.-Q., Rondinelli, J. M., and Franchini, C., Nat. Commun. 9, 492 (2018).CrossRefGoogle Scholar
Liu, S., Kim, Y., Tan, L. Z., and Rappe, A. M., Nano Lett. 16, 1663 (2016).CrossRefGoogle Scholar
Yan, B., Jansen, M., and Felser, C., Nat. Phys. 9, 709 (2013).CrossRefGoogle Scholar
Weber, S. F., Griffin, S. M., and Neaton, J. B., Phys. Rev. Materials 3, 064206 (2019).CrossRefGoogle Scholar
Zunger, A., Nature 566, 447 (2019).CrossRefGoogle Scholar
Sun, W., Dacek, S. T., Ong, S. P., Hautier, G., Jain, A., Richards, W. D., Gamst, A. C., Persson, K. A., and Ceder, G., Sci. Adv. 2, e1600225 (2016).CrossRefGoogle Scholar
Tang, Y. L., Zhu, Y. L., Ma, X. L., Borisevich, A. Y., Morozovska, A. N., Eliseev, E. A., Wang, W. Y., Wang, Y. J., Xu, Y. B., Zhang, Z. D., and Pennycook, S. J., Science 348, 547 (2015).CrossRefGoogle Scholar
Yadav, A. K., Nelson, C. T., Hsu, S. L., Hong, Z., Clarkson, J. D., Schlepütz, C. M., Damodaran, A. R., Shafer, P., Arenholz, E., Dedon, L. R., Chen, D., Vishwanath, A., Minor, A. M., Chen, L. Q., Scott, J. F., Martin, L. W., and Ramesh, R., Nature 530, 198 (2016).CrossRefGoogle Scholar
Damodaran, A. R., Clarkson, J. D., Hong, Z., Liu, H., Yadav, A. K., Nelson, C. T., Hsu, S.-L., McCarter, M. R., Park, K.-D., Kravtsov, V., Farhan, A., Dong, Y., Cai, Z., Zhou, H., Aguado-Puente, P., García-Fernández, P., Íñiguez, J., Junquera, J., Scholl, A., Raschke, M. B., Chen, L.-Q., Fong, D. D., Ramesh, R., and Martin, L. W., Nat. Mater. 16, 1003 (2017).CrossRefGoogle Scholar
Hong, Z., Damodaran, A. R., Xue, F., Hsu, S.-L., Britson, J., Yadav, A. K., Nelson, C. T., Wang, J.-J., Scott, J. F., Martin, L. W., Ramesh, R., and Chen, L.-Q., Nano Lett. 17, 2246 (2017).CrossRefGoogle Scholar
Das, S., Tang, Y. L., Hong, Z., a, M.. Gonçalves, P., McCarter, M. R., Klewe, C., Nguyen, K. X., Gómez-Ortiz, F., Shafer, P., Arenholz, E., Stoica, V. A., Hsu, S.-L., Wang, B., Ophus, C., Liu, J. F., Nelson, C. T., Saremi, S., Prasad, B., Mei, A. B., Schlom, D. G., Íñiguez, J., García-Fernández, P., Muller, D. A., Chen, L. Q., Junquera, J., Martin, L. W., and Ramesh, R., Nature 568, 368 (2019).CrossRefGoogle Scholar
Yadav, A. K., Nguyen, K. X., Hong, Z., García-Fernández, P., Aguado-Puente, P., Nelson, C. T., Das, S., Prasad, B., Kwon, D., Cheema, S., Khan, A. I., Hu, C., Íñiguez, J., Junquera, J., Chen, L.-Q., Muller, D. A., Ramesh, R., and Salahuddin, S., Nature 565, 468 (2019).CrossRefGoogle Scholar
Zubko, P., Wojdeł, J. C., Hadjimichael, M., Fernandez-Pena, S., Sené, A., Luk'yanchuk, I., Triscone, J.-M., and Íñiguez, J., Nature 534, 524 (2016).CrossRefGoogle Scholar
Hoffmann, M., Fengler, F. P. G., Herzig, M., Mittmann, T., Max, B., Schroeder, U., Negrea, R., Lucian, P., Slesazeck, S., and Mikolajick, T., Nature 565, 464 (2019).CrossRefGoogle Scholar
Liu, G., Zhang, Q., Huang, H.-H., Munroe, P., Nagarajan, V., Simons, H., Hong, Z., and Chen, L.-Q., Adv. Mater. Interfaces 3, 1600444 (2016).CrossRefGoogle Scholar
Sai, N., Meyer, B., and Vanderbilt, D., Phys. Rev. Lett. 84, 5636 (2000).CrossRefGoogle Scholar
Xue, F., Wang, J. J., Sheng, G., Huang, E., Cao, Y., Huang, H. H., Munroe, P., Mahjoub, R., Li, Y. L., Nagarajan, V., and Chen, L. Q., Acta Mater. 61, 2909 (2013).CrossRefGoogle Scholar
Lupi, E., Ghosh, A., Saremi, S., Hsu, S., Pandya, S., Velarde, G., Fernandez, A., Ramesh, R., and Martin, L. W., Adv. Electron. Mater. 6, 1901395 (2020).CrossRefGoogle Scholar
Park, S. Y., Rabe, K. M., and Neaton, J. B., Proc. Natl. Acad. Sci. USA 116, 23972 (2019).CrossRefGoogle Scholar
Dearnaley, G., Nature 256, 701 (1975).CrossRefGoogle Scholar
Shinada, T., Okamoto, S., Kobayashi, T., and Ohdomari, I., Nature 437, 1128 (2005).CrossRefGoogle Scholar
Saremi, S., Xu, R., Dedon, L. R., Mundy, J. A., Hsu, S. L., Chen, Z., Damodaran, A. R., Chapman, S. P., Evans, J. T., and Martin, L. W., Adv. Mater. 28, 10750 (2016).CrossRefGoogle Scholar
Herklotz, A., Rus, S. F., Balke, N., Rouleau, C., Guo, E. J., Huon, A., Kc, S., Roth, R., Yang, X., Vaswani, C., Wang, J., Orth, P. P., Scheurer, M. S., and Ward, T. Z., Nano Lett. 19, 1033 (2019).CrossRefGoogle Scholar
McGilly, L. J., Sandu, C. S., Feigl, L., Damjanovic, D., and Setter, N., Adv. Funct. Mater. 27, (2017).CrossRefGoogle Scholar
Saremi, S., Xu, R., Allen, F. I., Maher, J., Agar, J. C., Gao, R., Hosemann, P., and Martin, L. W., Phys. Rev. Mater. 2, 084414 (2018).CrossRefGoogle Scholar
Konagai, M., Sugimoto, M., and Takahashi, K., J. Crystal Growth 45, 277 (1978).CrossRefGoogle Scholar
Bakaul, S. R., Serrao, C. R., Lee, M., Yeung, C. W., Sarker, A., Hsu, S.-L., Yadav, A. K., Dedon, L., You, L., Khan, A. I., Clarkson, J. D., Hu, C., Ramesh, R., and Salahuddin, S., Nat. Commun. 7, 10547 (2016).CrossRefGoogle Scholar
Lu, D., Baek, D. J., Hong, S. S., Kourkoutis, L. F., Hikita, Y., and Hwang, H. Y., Nat. Mater. 15, 1255 (2016).CrossRefGoogle Scholar
Lu, D., Crossley, S., Xu, R., Hikita, Y., and Hwang, H. Y., Nano Lett. 19, 3999 (2019).CrossRefGoogle Scholar
Luo, Z.-D., Peters, J. J. P., Sanchez, A. M., and Alexe, M., ACS Appl. Mater. Interfaces 11, 23313 (2019).CrossRefGoogle ScholarPubMed
Kum, H. S., Lee, H., Kim, S., Lindemann, S., Kong, W., Qiao, K., Chen, P., Irwin, J., Lee, J. H., Xie, S., Subramanian, S., Shim, J., Bae, S., Choi, C., Ranno, L., Seo, S., Lee, S., Bauer, J., Li, H., Lee, K., Robinson, J. A., Ross, C. A., Schlom, D. G., Rzchowski, M. S., Eom, C.-B., and Kim, J., Nature 578, 75 (2020).CrossRefGoogle Scholar
Chu, Y.-H., Npj Quantum Mater. 2, 67 (2017).CrossRefGoogle Scholar
Ko, D. L., Tsai, M. F., Chen, J. W., Shao, P. W., Tan, Y. Z., Wang, J. J., Ho, S. Z., Lai, Y. H., Chueh, Y. L., Chen, Y. C., Tsai, D. P., Chen, L.-Q., and Chu, Y. H., Sci. Adv. 6, eaaz3180 (2020).CrossRefGoogle Scholar
Hong, S. S., Yu, J. H., Lu, D., Marshall, A. F., Hikita, Y., Cui, Y., and Hwang, H. Y., Sci. Adv. 3, eaao5173 (2017).CrossRefGoogle Scholar
Ji, D., Cai, S., Paudel, T. R., Sun, H., Zhang, C., Han, L., Wei, Y., Zang, Y., Gu, M., Zhang, Y., Gao, W., Huyan, H., Guo, W., Wu, D., Gu, Z., Tsymbal, E. Y., Wang, P., Nie, Y., and Pan, X., Nature 570, 87 (2019).CrossRefGoogle Scholar
Xu, R., Huang, J., Barnard, E. S., Hong, S. S., Singh, P., Wong, E. K., Jansen, T., Harbola, V., Xiao, J., Wang, B. Y., Crossley, S., Lu, D., Liu, S., and Hwang, H. Y., Nat. Commun. 11, 3141 (2020).CrossRefGoogle Scholar
Pesquera, D., Parsonnet, E., Qualls, A., Xu, R., Gubser, A., Kim, J., Jiang, Y., Velarde, G., Huang, Y.-L., Hwnag, H., Ramesh, R., and Martin, L., Submitted for Publication (2020).Google Scholar
Baek, S. H., Park, J., Kim, D. M., Aksyuk, V. a., Das, R. R., Bu, S. D., Felker, D. a., Lettieri, J., Vaithyanathan, V., Bharadwaja, S. S. N., Bassiri-Gharb, N., Chen, Y. B., Sun, H. P., Folkman, C. M., Jang, H. W., Kreft, D. J., Streiffer, S. K., Ramesh, R., Pan, X. Q., Trolier-McKinstry, S., Schlom, D. G., Rzchowski, M. S., Blick, R. H., and Eom, C. B., Science 334, 958 (2011).CrossRefGoogle Scholar
Bhaskar, U. K., Banerjee, N., Abdollahi, A., Solanas, E., Rijnders, G., and Catalan, G., Nanoscale 8, 1293 (2016).CrossRefGoogle Scholar
Elangovan, H., Barzilay, M., Seremi, S., Cohen, N., Jiang, Y., Martin, L. W., and Ivry, Y., ACS Nano 14, 5053 (2020).CrossRefGoogle Scholar
Dong, G., Li, S., Yao, M., Zhou, Z., Zhang, Y., Han, X., Luo, Z., Yao, J., Peng, B., Hu, Z., Huang, H., Jia, T., Li, J., Ren, W., Ye, Z., Ding, X., Sun, J., Nan, C., Chen, L., Li, J., and Liu, M., Science 366, 475 (2019).CrossRefGoogle Scholar
Pandya, S., Wilbur, J. D., Bhatia, B., Damodaran, A. R., Monachon, C., Dasgupta, A., King, W. P., Dames, C., and Martin, L. W., Phys. Rev. Appl. 7, 034025 (2017).CrossRefGoogle Scholar
Pandya, S., Velarde, G. A., Gao, R., Everhardt, A. S., Wilbur, J. D., Xu, R., Maher, J. T., Agar, J. C., Dames, C., and Martin, L. W., Adv. Mater. 31, 1803312 (2019).CrossRefGoogle Scholar
Velarde, G., Pandya, S., Zhang, L., Garcia, D., Lupi, E., Gao, R., Wilbur, J. D., Dames, C., and Martin, L. W., ACS Appl. Mater. Interfaces 11, 35146 (2019).CrossRefGoogle Scholar
Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E., and LeBlanc, A. R., IEEE J. Solid-State Circuits 9, 256 (1974).CrossRefGoogle Scholar
Bohr, M., IEEE Solid-State Circuits Newsl. 12, 11 (2007).CrossRefGoogle Scholar
Xu, R., Gao, R., Reyes-Lillo, S. E., Saremi, S., Dong, Y., Lu, H., Chen, Z., Lu, X., Qi, Y., Hsu, S.-L., Damodaran, A. R., Zhou, H., Neaton, J. B., and Martin, L. W., ACS Nano 12, 4736 (2018).CrossRefGoogle Scholar
Huang, W., Zhao, W., Luo, Z., Yin, Y., Lin, Y., Hou, C., Tian, B., Duan, C.-G., and Li, X.-G., Adv. Electron. Mater. 4, 1700560 (2018).CrossRefGoogle Scholar
Zhao, W., Huang, W., Liu, C., Hou, C., Chen, Z., Yin, Y., and Li, X., ACS Appl. Mater. Interfaces 10, 21390 (2018).CrossRefGoogle Scholar
Xu, R., Liu, S., Saremi, S., Gao, R., Wang, J. J., Hong, Z., Lu, H., Ghosh, A., Pandya, S., Bonturim, E., Chen, Z. H., Chen, L. Q., Rappe, A. M., and Martin, L. W., Nat Commun 10, 1282 (2019).CrossRefGoogle Scholar
Manipatruni, S., Nikonov, D. E., Lin, C.-C., Gosavi, T. A., Liu, H., Prasad, B., Huang, Y.-L., Bonturim, E., Ramesh, R., and Young, I. A., Nature 565, 35 (2019).CrossRefGoogle Scholar
Liang, Z., Mankalale, M. G., Hu, J., Zhao, Z., Wang, J.-P., and Sapatnekar, S. S., IEEE J. Explor. Solid-State Comput. Devices Circuits 4, 51 (2018).CrossRefGoogle Scholar
Buragohain, P., Erickson, A., Kariuki, P., Mittmann, T., Richter, C., Lomenzo, P. D., Lu, H., Schenk, T., Mikolajick, T., Schroeder, U., and Gruverman, A., ACS Appl. Mater. Interfaces 11, 35115 (2019).CrossRefGoogle Scholar
Cheema, S. S., Kwon, D., Shanker, N., dos Reis, R., Hsu, S.-L., Xiao, J., Zhang, H., Wagner, R., Datar, A., McCarter, M. R., Serrao, C. R., Yadav, A. K., Karbasian, G., Hsu, C.-H., Tan, A. J., Wang, L.-C., Thakare, V., Zhang, X., Mehta, A., Karapetrova, E., Chopdekar, R. V., Shafer, P., Arenholz, E., Hu, C., Proksch, R., Ramesh, R., Ciston, J., and Salahuddin, S., Nature 580, 478 (2020).CrossRefGoogle Scholar
Lee, K., Lee, H.-J., Lee, T. Y., Lim, H. H., Song, M. S., Yoo, H. K., Suh, D. I., Lee, J. G., Zhu, Z., Yoon, A., MacDonald, M. R., Lei, X., Park, K., Park, J., Lee, J. H., and Chae, S. C., ACS Appl. Mater. Interfaces 11, 38929 (2019).CrossRefGoogle Scholar