Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T20:49:54.917Z Has data issue: false hasContentIssue false

The behavior of unirradiated UO2 and uraninite under repository conditions characterized by Raman

Published online by Cambridge University Press:  20 February 2017

L. J. Bonales*
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040 Madrid, Spain.
J.M. Elorrieta
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040 Madrid, Spain.
C. Menor-Salván
Affiliation:
Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir, km 4, 28850 Torrejón de Ardoz, Spain.
J. Cobos
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040 Madrid, Spain.
Get access

Abstract

Raman spectroscopy studies have been performed on one hand to identify different materials related to spent nuclear fuel (SNF), and on the other hand to study the behavior of SNF at different storage conditions. Specifically, the expected oxidation of the SNF matrix under dry storage conditions and the formation of secondary phases (SP), as a result of corrosion of SNF in a deep geological repository, have been studied. In order to perform these experiments, two protocols based on the Raman spectroscopy technique have been developed. The results show U4O9/U3O7 and U3O8 as oxidation products of UO2 powder at high temperatures in air, and the secondary phase formation (rutherfordine, UO2(CO3), soddyite, (UO2)2SiO4•2H2O, uranophane alpha Ca(UO2)2(SiO3OH)2•5H2O and kasolite, PbUO2SiO4•H2O), due to uraninite corrosion under the conditions of Sierra Albarrana (Spain).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fernandez, F. J.. Spent Fuel Long Term Interim Storage: The Spanish Policy . Safety of Long-term Interim Storage Facilities, Workshop Proceedings Munich, Germany 21-23, 121137 (2013).Google Scholar
McEachern, R. J., Taylor, P., J. Nucl. Mater. 254, 87121(1998).Google Scholar
Ferry, C., Poinssot, C., Cappelaere, C., Desgranges, L., Jegou, C., Miserque, F., Piron, J. P., Roudil, D., Gras, J. M., J. Nucl. Mater. 352, 246253 (2006).CrossRefGoogle Scholar
Shoesmith, D. W., J. Nucl. Mater. 282, 131 (2000).Google Scholar
Gray, W., “Effect of Surface Oxidation, Alpha Radiolysis and Salt Brine Composition on Spent Fuel and UO2 Leaching Performance”, PNL/SRP-6689, 1988, pp. 4.6–4.8Google Scholar
Wang, R., Katayama, J. B., Nucl. Chem. Wast. Manage. 3, 8390 (1982).CrossRefGoogle Scholar
Palomoa, C., Rodríguez, N., Iglesias, E., Nietoa, J., Cobos, J., Quiñones, J., MRS Proceedings, 1665, 7177 (2014)CrossRefGoogle Scholar
González del Tánago, J., Martinez, M.,, Peinado, M., I Congreso español de Geología, II, (1984) 131145.Google Scholar
González del Tánago, J.., PhD. Thesis. Universidad Complutense de Madrid (1993).Google Scholar
Allen, G. C., Butler, I. S., Tuan, N. A., J. Nucl. Mater. 144, 1719 (1987).Google Scholar
Manara, D., Renker, B., J. Nucl. Mater. 321, 233237 (2003).Google Scholar
He, H., Shoesmith, D., Phys. Chem. Chem. Phys. 12, 81088117 (2010).CrossRefGoogle Scholar
Desgranges, L., Baldinozzi, G., Simon, P., Guimbretiere, G., Canizares, A., J. Raman Spectrosc. 43, 455458 (2012).Google Scholar
Guimbretiere, G., Desgranges, L., Canizares, A., Carlot, G., Caraballo, R., Jegou, C., Duval, F., Raimboux, N., Ammar, M. R. and Simon, P., Appl. Phys. Lett. 100, 251914 (2012).Google Scholar
Desgranges, L., Baldinozzi, G., Simon, P., Guimbretiere, G., Canizares, A.. J. Raman Spectrosc. 43, 455458 (2012).Google Scholar
Butler, I., Allen, G., Tuan, N., Applied Spectroscopy 42, 901902 (1988).Google Scholar
Pointurier, F., Marie, O.. Spectrochimica Acta Part B 65, 797804, (2010).Google Scholar
Frost, R. L., Jiri, C., J. Raman Spectrosc. 40, 10961103 (2009).CrossRefGoogle Scholar
Frost, R. L., Cejka, J., Weier, M. L., Martens, W., J. Raman Spectrosc. 37, 538551 (2006).CrossRefGoogle Scholar
Frost, R. L., Weier, M. L., Martens, W., Kloprogge, T., Cejka, J., Spectrochim. Acta 63, 305312 (2006).CrossRefGoogle Scholar
Biwer, B. M., Ebert, W. L., Bates, J. K., J. Nucl. Mater. 175, 188193 (1990).CrossRefGoogle Scholar