Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T23:44:45.567Z Has data issue: false hasContentIssue false

Atomic-Orbital and Plane-Wave Approaches to Ferromagnetic Properties of Ni x Fe1-x Nanowires

Published online by Cambridge University Press:  07 February 2017

Ikram Ziti
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, CDMX 04510, Mexico National School of Applied Sciences, Abdelmalik Esaadi University, Tangier, Morocco
M. R. Britel
Affiliation:
National School of Applied Sciences, Abdelmalik Esaadi University, Tangier, Morocco
Chumin Wang*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, CDMX 04510, Mexico
*
*(Email: chumin@unam.mx)
Get access

Abstract

There are growing interests on magnetic nanowires, due to their potential applications in magnetic sensors and recording devices. In this work, we report a comparative ab-initio study based on the Density Functional Theory (DFT) of Ni x Fe1-x nanowire periodic arrays by using atomic-orbital and plane-wave basis respectively through DMol3 and CASTEP codes. After performing the geometry optimization, we calculate the spin-polarized electronic density of states, average interatomic distance, and magnetic moments. For pure Ni nanowires (x = 1, the dependence of the magnetic moment obtained from CASTEP calculations on the cutoff energy, as well as that from DMol3 on the thermal smearing parameter is analyzed in detail. Both ab-initio calculations predict close magnetic moments for each x, being slightly larger those of DMol3 obtained with significantly less computing cost. Finally, these DFT results are compared with experimental data and a good agreement is observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Prina-Mello, A., Diao, Z. and Coey, J. M. D., J. Nanobiotechnol. 4, 9 (2006).Google Scholar
Safi, M., Yan, M., Guedeau-Boudeville, M., Conjeaud, H., Garnier-Thibaud, V., Boggetto, N., Baeza-Squiban, A., Niedergang, F., Averbeck, D., and Berret, J., ACS Nano 5, 5354 (2011).Google Scholar
Parkin, S. S. P., Hayashi, M. and Thomas, L., Science, 320, 190 (2008).Google Scholar
Piraux, L., Dubois, S., Fert, A., J. Mag. Mag. Mater. 195, L287, (1996).Google Scholar
Pfeifer, F. and Radeloff, C., J. Mag. Mag. Mater. 19, 190 (1980).Google Scholar
Vázquez, M., Hernández-Vélez, M., Pirota, K., Asenjo, A., Navas, D., Velázquez, J., Vargas, P., and Ramos, C. Eur. Phys. J. B 40, 489 (2004).Google Scholar
Almasi Kashi, M., Ramazani, A., Doudafkan, S., and Esmaeily, A. S., Appl. Phys. A 102, 761 (2011).CrossRefGoogle Scholar
Aravamudhan, S, Singleton, J, Goddard, P A, and Bhansali, S, J. Phys. D: Appl. Phys. 42 (2009) 115008 (9pp).Google Scholar
Bonder, Y. and Wang, C., J. Appl. Phys. 100, 044319 (2006).Google Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., and Payne, M. C., Zeitschrift fuer Kristallographie, 220, 567, (2005).Google Scholar
Delley, B., J. Chem. Phys. 113, 7756 (2000); J. Chem. Phys. 92, 508 (1990).Google Scholar
Perdew, J. P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
Anisimov, V.I. and Gunnarsson, O., Phys. Rev. B 43, 7570 (1991).Google Scholar
Chang, S.-J., Yang, C.-Y., Ma, H.-C., and Tseng, Y.-C., J. Mag. Mag. Mater. 332, 21 (2013).Google Scholar
Glaubitz, B., Buschhorn, S., Brüssing, F., Abrudan, R., and Zabel, H., J. Phys.: Condens. Matter 23, 254210 (2011).Google Scholar