Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:59:01.110Z Has data issue: false hasContentIssue false

Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

Published online by Cambridge University Press:  07 May 2018

Florian A. Ceynowa
Affiliation:
Aalborg University, 9220 Aalborg, Denmark Kiel University, 24098 Kiel, Germany
Manohar Chirumamilla
Affiliation:
Aalborg University, 9220 Aalborg, Denmark
Vladimir A. Zenin
Affiliation:
University of Southern Denmark, 5230 Odense, Denmark
Vladimir N. Popok*
Affiliation:
Aalborg University, 9220 Aalborg, Denmark
*
*(Email: vp@mp.aau.dk)
Get access

Abstract

Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat treatment allows to form specific patterns (arrays) of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials, in particular, for the formation of plasmonic structures with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G., and Atwater, H. A., Adv. Mater. 13, 1501 (2001).3.0.CO;2-Z>CrossRefGoogle Scholar
Palaciou, E., Chen, A., Foley, J., Gray, S. K., Welp, U., Rosenmann, D., and Vlasko-Vlasov, V. K., Adv. Opt. Mater. 14, 2 (2014).Google Scholar
Pazos-Perez, N., Ni, W., Schweikart, A., Alvarez-Puebla, R. A., Fery, A., and Liz-Marzan, L. M., Chem. Sci. 1, 174 (2010).CrossRefGoogle Scholar
Brazhe, N. A., Evlyukhin, A. B., Goodilin, E. A. et al. . Sci. Rep. 5, 13793 (2015).CrossRefGoogle Scholar
Taylor, R. W., Lee, T.-C., Scherman, O. A., Esteban, R., Aizpurua, J., Huang, F. M., Baumberg, J. J., and Mahajan, S., ACS Nano, 5, 3878 (2011).CrossRefGoogle Scholar
Chen, J., Huang, J., Toma, A. et al. . Adv. Mater. Interfaces 4, 1700505 (2017).CrossRefGoogle Scholar
Ghisleri, C., Borghi, F., Ravagnan, L., Podests, A., Melis, C., Colombo, L., and Milani, P., J. Phys. D: Appl. Phys. 45, 015301 (2014).Google Scholar
Popok, V. N., Hanif, M., Ceynowa, F. A., and Foyan, P., Nucl. Instr. Meth Phys. Res. B 409, 91 (2017).CrossRefGoogle Scholar
Hanif, M., Juluri, R. R., Fojan, P., and Popok, V. N., Biointerface Res. Appl. Chem. 6, 1564 (2016).Google Scholar
Hanif, M., Juluri, R. R., Chirumamilla, M., and Popok, V. N., J. Polym. Sci. B 54, 1152 (2016).CrossRefGoogle Scholar
Ruffino, F., Torrisi, V., Marletta, G., and Grimaldi, M. G., Appl. Phys. A 107, 669 (2012).CrossRefGoogle Scholar
Novikov, S. M., Popok, V. N., Evlyukhin, A. B., Hanif, M., Morgen, P., Fiutowski, J., Beermann, J., Rubahn, H.-G., and Bozhevolnyi, S. I., Langmuir 33, 6062 (2017).CrossRefGoogle Scholar
Hanif, M., Popok, V. N., Mackova, A., and Miksova, R., J. Polym. Sci. B 53, 664 (2015).Google Scholar