Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:51:16.408Z Has data issue: false hasContentIssue false

Aqueous-Organic Phase Transfer of Iron Oxide@Iron Carbide Nanoparticles Using Amide-Amine Modified Oleic Acid

Published online by Cambridge University Press:  20 April 2020

Anya Arguelles-Pesqueira
Affiliation:
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo, Sonora, México
Paul Zavala-Rivera*
Affiliation:
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo, Sonora, México
Armando Lucero-Acuña
Affiliation:
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo, Sonora, México
Patricia Guerrero-German
Affiliation:
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo, Sonora, México
Aaron Rosas Durazo
Affiliation:
Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo, Sonora, México
Ramon Moreno-Corral
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
Judith Tánori
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
Get access

Abstract

Schematic of ICIONP’s interaction with OAEm chains model and its applications.

The advances of iron based magnetic nanoparticles are extensively increasing due to the number of sources related to the synthesis process, the control on the particle dispersion and the interactions of ferrofluids that can be provide with different surface modifications. The wide range of uses granted to them are based on the physical, chemical stability and interaction properties in the different yields of material science. In this work, ferromagnetic iron carbide@iron oxide core@shell nanoparticles were synthesized with hydrophobic nature. Water dispersity was controlled by modifying the surface with a synthesized molecule of oleic acid with ethylenediamine by bioconjugation reaction obtaining a conjugated amide-amine modified oleic acid coating 6 nm magnetic nanoparticles with the capacity of being water dispersable. The synthesized nanoparticles, with modified organic acid and surface modified nanoparticle were characterized by TEM, DLS, zeta potential, mass spectrometry, FTIR and NMR.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meffre, A., Mehdaoui, B., Kelsen, V., Fazzini, P.F., Carrey, J., Lachaize, S., Respaud, M., Chaudret, B., A Simple Chemical Route toward Monodisperse Iron Carbide Nanoparticles Displaying Tunable Magnetic and Unprecedented Hyperthermia Properties, Nano Lett. 12 (2012) 47224728.CrossRefGoogle ScholarPubMed
Ling, D., Lee, N., Hyeon, T., Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications, Acc. Chem. Res. 48 (2015) 12761285.CrossRefGoogle ScholarPubMed
Teng, X., Yang, H., Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles, J. Mater. Chem. 14 (2004) 774.CrossRefGoogle Scholar
Harris, R.A., Shumbula, P.M., van der Walt, H., Analysis of the Interaction of Surfactants Oleic Acid and Oleylamine with Iron Oxide Nanoparticles through Molecular Mechanics Modeling, Langmuir. 31 (2015) 39343943.CrossRefGoogle ScholarPubMed
López-Millán, A., Zavala-Rivera, P., Esquivel, R., Carrillo, R., Alvarez-Ramos, E., Moreno-Corral, R., Guzmán-Zamudio, R., Lucero-Acuña, A., López-Millán, A., Zavala-Rivera, P., Esquivel, R., Carrillo, R., Alvarez-Ramos, E., Moreno-Corral, R., Guzmán-Zamudio, R., Lucero-Acuña, A., Aqueous-Organic Phase Transfer of Gold and Silver Nanoparticles Using Thiol-Modified Oleic Acid, Appl. Sci. 7 (2017) 273.CrossRefGoogle Scholar
Liu, Y., Hou, W., Sun, H., Cui, C., Zhang, L., Jiang, Y., Wu, Y., Wang, Y., Li, J., Sumerlin, B.S., Liu, Q., Tan, W., Thiol–ene click chemistry: a biocompatible way for orthogonal bioconjugation of colloidal nanoparticles, Chem. Sci. 8 (2017) 61826187.CrossRefGoogle ScholarPubMed
Jadhav, S.A., Brunella, V., Scalarone, D., Polymerizable Ligands as Stabilizers for Nanoparticles, Part. Part. Syst. Charact. 32 (2015) 417428.CrossRefGoogle Scholar
Kandasamy, G., Surendran, S., Chakrabarty, A., Kale, S.N., Maity, D., Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications, RSC Adv. 6 (2016) 9994899959.CrossRefGoogle Scholar
Hermanson, G.T., Bioconjugate techniques, Third edit, Elsevier, 2013.Google Scholar
Argüelles-Pesqueira, A.I., Diéguez-Armenta, N.M., Bobadilla-Valencia, A.K., Nataraj, S.K., Rosas-Durazo, A., Esquivel, R., Alvarez-Ramos, M.E., Escudero, R., Guerrero-German, P., Lucero-Acuña, J.A., Zavala-Rivera, P., Low intensity sonosynthesis of iron carbide@iron oxide core-shell nanoparticles, Ultrason. Sonochem. (2018).CrossRefGoogle ScholarPubMed
Shanavas, A., Sasidharan, S., Bahadur, D., Srivastava, R., Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging, J. Colloid Interface Sci. 486 (2017) 112120.CrossRefGoogle ScholarPubMed
Khoshneviszadeh, M., Zargarnezhad, S., Ghasemi, Y., Gholami, A., Evaluation of Surface-modified Superparamagnetic Iron Oxide Nanoparticles to Optimize Bacterial Immobilization for Bio-separation with the Least Inhibitory Effect on Microorganism Activity, Nanosci. &Nanotechnology-Asia. 08 (2018).Google Scholar
Zhang, G., Qie, F., Hou, J., Luo, S., Luo, L., Sun, X., Tan, T., One-pot solvothermal method to prepare functionalized Fe 3O 4 nanoparticles for bioseparation, J. Mater. Res. 27 (2012) 10061013.CrossRefGoogle Scholar
Li, J., Huang, Q., Zhou, F., Zhou, Y., Li, M., Xia, N., Do, H., Liu, Y.-N., Carboxymethylated Dextran-Coated Magnetic Iron Oxide Nanoparticles for Regenerable Bioseparation Biomaterial Drug Delivery System View project electroanalysis View project Carboxymethylated Dextran-Coated Magnetic Iron Oxide Nanoparticles for Regenerable Bioseparation, Artic. J. Nanosci. Nanotechnol. 11 (2011) 1018710192.CrossRefGoogle Scholar
Grabarek, Z., Gergely, J., Zero-length crosslinking procedure with the use of active esters., Anal. Biochem. 185 (1990) 131–5.CrossRefGoogle ScholarPubMed
Rosas-Durazo, A., Lizardi, J., Higuera-Ciapara, I., Argüelles-Monal, W., Goycoolea, F.M., Development and characterization of nanocapsules comprising dodecyltrimethylammonium chloride and κ-carrageenan, Colloids Surfaces B Biointerfaces. 86 (2011) 242246.CrossRefGoogle ScholarPubMed
Kalliola, S., Repo, E., Sillanpää, M., Singh Arora, J., He, J., John, V.T., The stability of green nanoparticles in increased pH and salinity for applications in oil spill-treatment, Colloids Surfaces A Physicochem. Eng. Asp. 493 (2016) 99107.CrossRefGoogle Scholar
Bae, H., Ahmad, T., Rhee, I., Chang, Y., Jin, S.-U., Hong, S., Carbon-coated iron oxide nanoparticles as contrast agents in magnetic resonance imaging, Nanoscale Res. Lett. 7 (2012) 44.CrossRefGoogle ScholarPubMed
Stuart, B. (Barbara H.., Infrared spectroscopy: fundamentals and applications, J. Wiley, 2004.CrossRefGoogle Scholar
Kang, S., Jolley, C.C., Liepold, L.O., Young, M., Douglas, T., From metal binding to nanoparticle formation: monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry, Angew. Chemie - Int. Ed. 48 (2009) 47724776.CrossRefGoogle ScholarPubMed
Valeur, E., Bradley, M., Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev. 38 (2009) 606631.CrossRefGoogle ScholarPubMed
Yoo, M.-K., Park, I.-K., Lim, H.-T., Lee, S.-J., Jiang, H.-L., Kim, Y.-K., Choi, Y.-J., Cho, M.-H., Cho, C.-S., Folate–PEG–superparamagnetic iron oxide nanoparticles for lung cancer imaging, Acta Biomater. 8 (2012) 30053013.CrossRefGoogle ScholarPubMed