Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Zhang, Lei
He, Mu
and
Shao, Shaofeng
2020.
Machine learning for halide perovskite materials.
Nano Energy,
Vol. 78,
Issue. ,
p.
105380.
Agarwal, Y.
Das, B.
Dutta, A. J.
Deka, A. A.
Tripathy, S. K.
Lenka, T. R.
Menon, P. S.
Lin, F.
and
Aberle, A. G.
2020.
Numerical Simulation of Tunneling Effect in High-Efficiency Perovskite/Silicon Tandem Solar Cell.
p.
1318.
Odabaşı, Çağla
and
Yıldırım, Ramazan
2020.
Machine learning analysis on stability of perovskite solar cells.
Solar Energy Materials and Solar Cells,
Vol. 205,
Issue. ,
p.
110284.
Häse, Florian
Roch, Loïc M.
Friederich, Pascal
and
Aspuru-Guzik, Alán
2020.
Designing and understanding light-harvesting devices with machine learning.
Nature Communications,
Vol. 11,
Issue. 1,
Sánchez, Sandy
Carlsen, Brian
Škorjanc, Viktor
Flores, Natalie
Serafini, Patricio
Mora-Seró, Iván
Schouwink, Pascal
Zakeeruddin, Shaik M.
Graetzel, Michel
and
Hagfeldt, Anders
2021.
Thermodynamic stability screening of IR-photonic processed multication halide perovskite thin films.
Journal of Materials Chemistry A,
Vol. 9,
Issue. 47,
p.
26885.
Parikh, Nishi
Karamta, Meera
Yadav, Neha
Mahdi Tavakoli, Mohammad
Prochowicz, Daniel
Akin, Seckin
Kalam, Abul
Satapathi, Soumitra
and
Yadav, Pankaj
2022.
Is machine learning redefining the perovskite solar cells?.
Journal of Energy Chemistry,
Vol. 66,
Issue. ,
p.
74.
Zhang, Lei
Li, Shenyue
and
Hu, Wenguang
2023.
First-principles and machine learning modeling on adsorption of atmospheric gases on two-dimensional Ruddlesden–Popper halide perovskite surface.
Modelling and Simulation in Materials Science and Engineering,
Vol. 31,
Issue. 5,
p.
055004.
Liu, Tiantian
Wang, Sen
Shi, Yinguang
Wu, Lei
Zhu, Ruiyu
Wang, Yong
Zhou, Jun
and
Choy, Wallace C. H.
2023.
Machine‐Learning Accelerating the Development of Perovskite Photovoltaics.
Solar RRL,
Vol. 7,
Issue. 23,
B. Elza, Vinitha
Suresh Babu, V.
and
Abraham, Nelsa
2023.
Perspective on machine learning based investigated materials to realize Stable-Efficient-Toxin free (S-E-T) perovskite solar cells.
Materials Today: Proceedings,
Starger, Jesse L.
Fafarman, Aaron T.
Baxter, Jason B.
Alvarez, Nicolas J.
and
Cairncross, Richard A.
2023.
Quasi-2D Model to Predict Solid Microstructure in Drying Thin Films.
Langmuir,
Vol. 39,
Issue. 46,
p.
16231.
Vakharia, Vinay
Shah, Milind
Suthar, Venish
Patel, Vivek K.
and
Solanki, Ankur
2023.
Hybrid perovskites thin films morphology identification by adapting multiscale-SinGAN architecture, heat transfer search optimized feature selection and machine learning algorithms.
Physica Scripta,
Vol. 98,
Issue. 2,
p.
025203.
Jaafar, Hidayani
Jaafar, Haryati
Ahmad, Zainal Arifin
and
Asri, Muhammad Asyraf Mat
2025.
Effect of TiO2/eggshell composite using sol gel method photoanode for dye-sensitized solar cell applications (DSSC) and comparison using k-nearest neighbors method.
Materials Today Communications,
Vol. 45,
Issue. ,
p.
112240.
Jo, Bonghyun
Chen, Wenning
and
Jung, Hyun Suk
2025.
Comprehensive review of advances in machine-learning-driven optimization and characterization of perovskite materials for photovoltaic devices.
Journal of Energy Chemistry,
Vol. 101,
Issue. ,
p.
298.
Li, Zongwei
Huang, Chong
Chao, Lingfeng
Chen, Yonghua
Huang, Wei
and
Chen, Gaojie
2025.
Perovskite solar cells empowered by machine learning.
Journal of Energy Chemistry,