Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T04:01:03.776Z Has data issue: false hasContentIssue false

Antimicrobial Copper Cold Spray Coatings and SARS-CoV-2 Surface Inactivation

Published online by Cambridge University Press:  02 October 2020

Bryer C. Sousa
Affiliation:
Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, MA
Danielle L. Cote
Affiliation:
Materials Science and Engineering, Worcester Polytechnic Institute, Worcester, MA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article contextualizes how the antimicrobial properties and antipathogenic contact killing/inactivating performance of copper cold spray surfaces and coatings and can be extended to the COVID-19 pandemic as a preventative measure. Specifically, literature is reviewed in terms of how copper cold spray coatings can be applied to high-touch surfaces in biomedical as well as healthcare settings to prevent fomite transmission of SARS-CoV-2 through rapidly inactivating SARS-CoV-2 virions after contaminating a surface. The relevant literature on copper-based antipathogenic coatings and surfaces are then detailed. Particular attention is then given to the unique microstructurally-mediated pathway of copper ion diffusion associated with copper cold spray coatings that enable fomite inactivation.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

References

Xiao, S., Li, Y., wai Wong, T., and Hui, D. S. C.: Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong. PLoS One (2017).Google ScholarPubMed
West, R. and Michie, S.: Routes of transmission of SARS-CoV-2 and behaviours to block it: a summary. Qeios (2020).Google Scholar
Schröder, I.: COVID-19: A Risk Assessment Perspective. ACS Chem. Heal. Saf. 27(3), 160 (2020).CrossRefGoogle Scholar
Kraay, A. N. M., Hayashi, M. A. L., Berendes, D. M., Sobolik, J. S., Leon, J. S., and Lopman, B. A.: Risk of fomite-mediated transmission of SARS-CoV-2 in child daycares, schools, and offices: a modeling study. medRxiv 2020.08.10.20171629 (2020).Google Scholar
Poggio, C., Colombo, M., Arciola, C. R., Greggi, T., Scribante, A., and Dagna, A.: Copper-Alloy Surfaces and Cleaning Regimens against the Spread of SARS-CoV-2 in Dentistry and Orthopedics. From Fomites to Anti-Infective Nanocoatings. Materials (Basel). (2020).Google ScholarPubMed
Otter, J. A., Donskey, C., Yezli, S., Douthwaite, S., Goldenberg, S. D., and Weber, D. J.: J. Hosp. Infect. (2016).Google Scholar
Castaño, N., Cordts, S., Jalil, M. K., Zhang, K., Koppaka, S., Bick, A., Paul, R., and Tang, S. K.: Fomite transmission and disinfection strategies for SARS-CoV-2 and related viruses. (2020).Google Scholar
Patel, K. P., Vunnam, S. R., Patel, P. A., Krill, K. L., Korbitz, P. M., Gallagher, J. P., Suh, J. E., and Vunnam, R. R.: Eur. J. Clin. Microbiol. Infect. Dis. (2020).Google Scholar
Lei, H., Xiao, S., Cowling, B. J., and Li, Y.: Hand hygiene and surface cleaning should be paired for prevention of fomite transmission. Indoor Air (2020).Google ScholarPubMed
Santarpia, J. L., Rivera, D. N., Herrera, V., Morwitzer, M. J., Creager, H., Santarpia, G. W., Crown, K. K., Brett-Major, D., Schnaubelt, E., Broadhurst, M. J., Lawler, J. V., Reid, S. P., and Lowe, J. J.: Transmission Potential of SARS-CoV-2 in Viral Shedding Observed at the University of Nebraska Medical Center. medRxiv (2020).Google Scholar
Santarpia, J. L., Rivera, D. N., Herrera, V. L., Morwitzer, M. J., Creager, H. M., Santarpia, G. W., Crown, K. K., Brett-Major, D. M., Schnaubelt, E. R., Broadhurst, M. J., Lawler, J. V., Reid, S. P., and Lowe, J. J.: Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci. Rep. 10(1), 12732 (2020).Google ScholarPubMed
West, R., Michie, S., Rubin, G. J., and Amlôt, R.: Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nat. Hum. Behav. 4(5), 451 (2020).Google ScholarPubMed
Colaneri, M., Seminari, E., Novati, S., Asperges, E., Biscarini, S., Piralla, A., Percivalle, E., Cassaniti, I., Baldanti, F., Bruno, R., Mondelli, M. U., Bruno, R., Mondelli, M. U., Brunetti, E., Di Matteo, A., Seminari, E., Maiocchi, L., Zuccaro, V., Pagnucco, L., Ludovisi, S., Lissandrin, R., Parisi, A., Sacchi, P., Patruno, S. F. A., Michelone, G., Gulminetti, R., Zanaboni, D., Novati, S., Maserati, R., Orsolini, P., and Vecchia, M.: Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin. Microbiol. Infect. 26(8), 1094.e1 (2020).Google Scholar
Goldman, E.: Lancet Infect. Dis. (2020).Google Scholar
Haider, A., Kwak, S., Gupta, K. C., and Kang, I.-K.: Antibacterial Activity and Cytocompatibility of PLGA/CuO Hybrid Nanofiber Scaffolds Prepared by Electrospinning. J. Nanomater. 2015, 1 (2015).CrossRefGoogle Scholar
Villapún, V. M., Dover, L. G., Cross, A., and González, S.: Materials (Basel). (2016).Google Scholar
17. Villapún, V. M., Tardío, S., Cumpson, P., Burgess, J. G., Dover, L. G., and González, S.: Antimicrobial properties of Cu-based bulk metallic glass composites after surface modification. Surf. Coatings Technol. 372, 111 (2019).Google Scholar
Ciacotich, N., Kragh, K. N., Lichtenberg, M., Tesdorpf, J. E., Bjarnsholt, T., and Gram, L.: In Situ Monitoring of the Antibacterial Activity of a Copper–Silver Alloy Using Confocal Laser Scanning Microscopy and pH Microsensors. Glob. Challenges 3(11), 1900044 (2019).CrossRefGoogle ScholarPubMed
Kocaman, A. and Keles, O.: Antibacterial Efficacy of Wire Arc Sprayed Copper Coatings Against Various Pathogens. J. Therm. Spray Technol. (2019).Google Scholar
Muralidharan, S. K., Bauman, L., Anderson, W. A., and Zhao, B.: Recyclable antimicrobial sulphonated poly (ether ether ketone) – copper films: Flat vs micro-pillared surfaces. Mater. Today Commun. 25, 101485 (2020).CrossRefGoogle Scholar
Mantlo, E., Paessler, S., Seregin, A. V, and Mitchell, A. T.: Luminore CopperTouchTM surface coating effectively inactivates SARS-CoV-2, Ebola and Marburg viruses in vitro. medRxiv (2020).Google ScholarPubMed
Sousa, B. C., Sundberg, K. L., Gleason, M. A., and Cote, D. L.: Understanding the Antipathogenic Performance of Nanostructured and Conventional Copper Cold Spray Material Consolidations and Coated Surfaces. Crystals 10(6), 504 (2020).Google Scholar
Behzadinasab, S., Chin, A., Hosseini, M., Poon, L., and Ducker, W. A.: A Surface Coating that Rapidly Inactivates SARS-CoV-2. ACS Appl. Mater. Interfaces 12(31), 34723 (2020).CrossRefGoogle ScholarPubMed
Champagne, V. K. and Helfritch, D. J.: A demonstration of the antimicrobial effectiveness of various copper surfaces. J. Biol. Eng. (2013).CrossRefGoogle ScholarPubMed
Sundberg, K., Champagne, V. K., McNally, B., Helfritch, D., Sisson, R. D., and C, S. K. V: Effectiveness of Nanomaterial Copper Cold Spray Surfaces on Inactivation of Influenza A Virus. J. Biotechnol. Biomater. 05(04) (2015).Google Scholar
Sundberg, K., Wang, Y., Mishra, B., Carl, A., Grimm, R., Te, A., Lozeau, L., Sousa, B. C., Sisson, R. D., and Cote, D. L.: The Effect of Corrosion on Conventional and Nanomaterial Copper Cold Spray Surfaces for Antimicrobial Applications. Biomed. J. Sci. Tech. Res. 22(3) (2019).Google Scholar
Sousa, B., Sundberg, K., Massar, C., Champagne, V., and Cote, D.: in APS March Meet. 2019 (2019).Google Scholar
Sundberg, K., Gleason, M., Haddad, B., Champagne, V. K., Brown, C., Sisson, R. D., and Cote, D.: The effect of nano-scale surface roughness on copper cold spray inactivation of influenza A virus. Int. J. Nanotechnol. Med. Eng. 4, 33 (2019).Google Scholar
Sundberg, K.: Application of Materials Characterization, Efficacy Testing, and Modeling Methods on Copper Cold Spray Coatings for Optimized Antimicrobial Properties, Worcester Polytechnic Institute, 2019.Google Scholar
Sundberg, K. L., Sousa, B. C., Walde, C., Mohanty, S., Lee, J.-H., Champagne, V. K., and Cote, D. L.: Microstructural Characterization of Conventional and Nanostructured Copper Cold Gas-Dynamic Spray Material Consolidations. J. Biotechnol. Biomater. (2020).Google Scholar
Champagne, V., Sundberg, K., and Helfritch, D.: Kinetically deposited copper antimicrobial surfaces. Coatings (2019).Google Scholar
Rutkowska-Gorczyca, M.: X-ray diffraction and microstructural analysis of Cu–TiO 2 layers deposited by cold spray. Mater. Sci. Technol. 1 (2020).Google Scholar
Sanpo, N. and Tharajak, J.: Cold Spray Modification of ZnO-Cu Coatings for Bacterial Attachment Inhibition. Appl. Mech. Mater. 848, 23 (2016).CrossRefGoogle Scholar
Vucko, M. J. J., King, P. C. C., Poole, A. J. J., Carl, C., Jahedi, M. Z. Z., and de Nys, R.: Cold spray metal embedment: an innovative antifouling technology. Biofouling 28(3), 239 (2012).Google ScholarPubMed
Vucko, M. J., King, P. C., Poole, A. J., Jahedi, M. Z., and de Nys, R.: Polyurethane seismic streamer skins: an application of cold spray metal embedment. Biofouling J. Bioadhesion Biofilm Res. 29(1), 1 (2013).Google ScholarPubMed
El-Eskandrany, M. S. and Al-Azmi, A.: Potential applications of cold sprayed Cu 50 Ti 20 Ni 30 metallic glassy alloy powders for antibacterial protective coating in medical and food sectors. J. Mech. Behav. Biomed. Mater. 56, 183 (2016).CrossRefGoogle Scholar
da Silva, F. S., Cinca, N., Dosta, S., Cano, I. G., Guilemany, J. M., Caires, C. S. A., Lima, A. R., Silva, C. M., Oliveira, S. L., Caires, A. R. L., and Benedetti, A. V.: Corrosion resistance and antibacterial properties of copper coating deposited by cold gas spray. Surf. Coatings Technol. (2019).Google Scholar
Paiva, C. N. and Bozza, M. T.: Are Reactive Oxygen Species Always Detrimental to Pathogens? Antioxid. Redox Signal. 20(6), 1000 (2014).CrossRefGoogle ScholarPubMed
Han, Y. and Yang, H.: The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID-19): A Chinese perspective. J. Med. Virol. 92(6), 639 (2020).CrossRefGoogle ScholarPubMed