Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:35:44.517Z Has data issue: false hasContentIssue false

Zirconium Tetrakis(8-hydroxyquinolinolate) and Lithium Schiff-Base Cluster Complex for Efficient Charge Injection and Transfer in Green PHOLED processed by OVPD

Published online by Cambridge University Press:  04 June 2018

Gintautas Simkus
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany. AIXTRON SE, Dornkaulstr. 2, 52134Herzogenrath, Germany.
Pascal Pfeiffer
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany.
Simon Sanders
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany.
Dominik Stümmler
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany.
Peter K. Baumann
Affiliation:
APEVA SE, Dornkaulstr. 2, 52134Herzogenrath, Germany.
Sivagnansundram Surendrakumar
Affiliation:
Organic Electronics, Wolfson Centre, Brunel University London, Uxbridge, UB8 3PH, UK.
Muttulingam Kumaraverl
Affiliation:
Organic Electronics, Wolfson Centre, Brunel University London, Uxbridge, UB8 3PH, UK.
Maxson Liu
Affiliation:
Organic Electronics, Wolfson Centre, Brunel University London, Uxbridge, UB8 3PH, UK.
Seenivasagam Ravichandran
Affiliation:
Organic Electronics, Wolfson Centre, Brunel University London, Uxbridge, UB8 3PH, UK.
Poopathy Kathirgamanathan
Affiliation:
Organic Electronics, Wolfson Centre, Brunel University London, Uxbridge, UB8 3PH, UK.
Andrei Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany.
Holger Kalisch*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany.
Michael Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany. AIXTRON SE, Dornkaulstr. 2, 52134Herzogenrath, Germany.
Get access

Abstract

Typical electron transport (2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)) and injection (Cs2CO3) materials are successfully replaced by zirconium tetrakis(8-hydroxyquinolinolate) (Zrq4) and lithium 2-((o-tolylimino)methyl)-phenolate (EI-111) in simplified OLED (organic light-emitting diodes) processed by organic vapor phase deposition (OVPD). The performance of combining Zrq4 and EI-111 is analyzed in unipolar devices and compared to devices with configurations of Zrq4/Cs2CO3, TPBi/EI-111 and TPBi/Cs2CO3. Current density-voltage (J-V) measurements are performed and correlated to different carrier injection and transport properties. The investigated material combinations are implemented in the simplified OLED structures and compared to each other. To account for the high HOMO level of Zrq4, 5 nm of TPBi are added to confine holes and excitons in the emissive layer (EML) and to improve device performance. After tailoring the organic stack for OLED with Zrq4, a remarkable boost in device efficiency is observed. The luminous efficacy increased from 3.0 to 21.9 lm/W and the EQE from 2.1 to 11.0 % for a device with Zrq4/EI-111. Furthermore, OLED having Zrq4/Cs2CO3 show an even greater enhancement to 26.3 lm/W and 11.7 %.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Getmanenko, Y. A., Singh, S., Sandhu, B., Wang, C.-Y., Timofeeva, T., Kippelen, B. and Marder, S. R., J. Mater. Chem. C, 2, 124 (2014).CrossRefGoogle Scholar
Shin, H., Lee, J.-H., Moon, C.-K., Huh, J.-S., Sim, B., Ki, J.-J., Adv. Mater. 28, 49204925 (2016).CrossRefGoogle ScholarPubMed
Jou, J-H., Kumar, S., Agrawal, A., Lia, T-H. and Sahooa, S., J. Mater. Chem. C, 3, 2974 (2015).CrossRefGoogle Scholar
So, F., Kido, J. and Burrows, P., MRS Bull. 33 663 (2008).CrossRefGoogle Scholar
Kathirgamanathan, P., Surendrakumar, S., Antipan-Lara, J., Ravichandran, S., Reddy, V. R., Ganeshamurugan, S., Kumaraverl, M., Arkley, V., Blake, A. J. and Bailey, D., J. Mater. Chem. 21, 17621771 (2011).CrossRefGoogle Scholar
Kathirgamanathan, P., Surendrakumar, S., Antipan-Lara, J., Ravichandran, S., Chan, Y. F., Arkley, V., Ganeshamurugan, S., Kumaraverl, M., Paramswara, G., Partheepan, A., Reddy, V. R., Baileyb, D. and Blake, A. J., J. Mater. Chem. 22 61046116, (2012).CrossRefGoogle Scholar
Zhang, Y. and Aziz, H., Organic Electronics 30 76 (2016).CrossRefGoogle Scholar
Reineke, S., Lindner, F., Schwartz, G., Seidler, N., Walzer, K., Lüssem, B. and Leo, K., Nature 459 234 (2009).CrossRefGoogle Scholar
Hasagawa, T., Miura, S., Moriyama, T., Kimura, T., Takaya, I., Osato, Y. and Mizutani, H., SID Symposium Digest of Technical Papers 35 154 (2004).CrossRefGoogle Scholar
Liu, Z. W., Helander, M. G., Wang, Z. B. and Lu, Z. H., Appl. Phys. Lett. 94 113305 (2009).CrossRefGoogle Scholar
Pfeiffer, P., Beckmann, C., Stümmler, D., Sanders, S., Simkus, G., Heuken, M., Vescan, A. and Kalisch, H., Appl. Phys. Lett. 111 243301 (2017).CrossRefGoogle Scholar
Kido, J. and Matsumoto, T., Appl. Phys. Lett. 73 2866 (1998).CrossRefGoogle Scholar