Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:33:52.410Z Has data issue: false hasContentIssue false

Versatile Water-Based Transfer of Large-Area Graphene Films onto Flexible Substrates

Published online by Cambridge University Press:  12 September 2017

Maria Kim*
Affiliation:
Department of Electronics and Nanoengineering, Aalto University, PO Box 13500, FI-00076 Aalto, Finland
Changfeng Li
Affiliation:
Department of Electronics and Nanoengineering, Aalto University, PO Box 13500, FI-00076 Aalto, Finland
Jannatul Susoma
Affiliation:
Department of Electronics and Nanoengineering, Aalto University, PO Box 13500, FI-00076 Aalto, Finland
Juha Riikonen
Affiliation:
Department of Electronics and Nanoengineering, Aalto University, PO Box 13500, FI-00076 Aalto, Finland
Harri Lipsanen
Affiliation:
Department of Electronics and Nanoengineering, Aalto University, PO Box 13500, FI-00076 Aalto, Finland
Get access

Abstract

Next-generation electronic devices are expected to demonstrate greater utility, efficiency and durability. Meanwhile, plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and variety of poly(para-xylylene) polymers enable transformational advantages to device shape, flexibility, weight, transparency and recyclability. Exhibiting a combination of outstanding mechanical, electrical, optical, and chemical properties of graphene with the plastic substrates could propose ideal material for the future flexible electronics. Chemical vapor deposition (CVD) allows cost-effective fabrication of a high-quality large-area graphene films, however, the critical issue is clean and noninvasive transfer of the films onto a desired substrate. The water-based delamination of CVD grown graphene on Cu can be considered as a “green” transfer process utilizing only hot deionized water. We investigated a method requiring only two essential steps: coating of 6-inch monolayer CVD graphene with transparent and flexible polymer, and Cu delamination in hot water. Proposed method is inexpensive, reproducible, environmentally friendly, waste-free and suitable for large-scale, high quality graphene. The transfer process demonstrated films with enhanced charge carrier mobility, high uniformity, free of mechanical defects, and sheet resistance as low as ∼50 Ω/sq with 96.5 % transparency at 550 nm wavelength.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Editorial, Nature Nanotech. 9, 725 (2014).CrossRefGoogle Scholar
Pakdel, A., Bandoa, Y., and Golberg, D., Chem. Soc. Rev 3, 934959 (2014).CrossRefGoogle Scholar
Vangelista, S., Cinquanta, E., Martella, C., Kastl, C., Chen, C. T., and Kuykendall, T., Nanotechnology 28, (2017).Google Scholar
Jafari, A., Ghoranneviss, M., Gholami, M., and Mostahsan, N., International Nano Lett. 5, 199204 (2015).CrossRefGoogle Scholar
Bartelt, N. C. and McCarty, K. F., MRS Bull. 37, 11581165 (2012).CrossRefGoogle Scholar
Zaretski, A. V. and Lipomi, D. J., Nanoscale 7, 99639969 (2015).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y., Kim, K. S., Ozyilmaz, B., Ahn, J., Hong, B. H., and Iijima, S., Nature Nanotech. 5, 574578 (2010).CrossRefGoogle Scholar
Yoon, T., Shin, W. C., Kim, T. Y., Mun, J. H., Kim, T., and Cho, B. J., Nano Lett. 12, 14481452 (2012).CrossRefGoogle Scholar
Wang, Y., Zheng, Y., Xu, X., Dubuisson, E., Bao, Q., Lu, J., Loh, K. P., and Al, W. E. T., ACS Nano 5, 99279933 (2011).CrossRefGoogle Scholar
Pizzocchero, F., Jessen, B. S., Whelan, P. R., Kostesha, N., Lee, S., Buron, J. D., Petrushina, I., Larsen, M. B., Greenwood, P., Cha, W. J., Teo, K., Jepsen, P. U., Hone, J., Bøggild, P., and Booth, T. J., Carbon 85, 397405 (2015).CrossRefGoogle Scholar
Wang, R., Whelan, P. R., Braeuninger-weimer, P., Tappertzhofen, S., Alexander-webber, J., Veldhoven, Z. A. V., Kidambi, P. R., Jessen, B. S., Booth, T., Bøggild, P., and Hofmann, S., ACS Appl. Mater. Interfaces 8, 3307233082 (2016).CrossRefGoogle ScholarPubMed
Gupta, P., Dongare, P. D., Grover, S., Dubey, S., Mamgain, H., Bhattacharya, A., and Deshmukh, M. M., Scientific Reports 4, 3882–3882 (2014).CrossRefGoogle Scholar
Riikonen, J., Kim, W., Li, C., Svensk, O., Arpiainen, S., Kainlauri, M., and Lipsanen, H., Carbon 62, 4350 (2013).CrossRefGoogle Scholar
Kim, M., Shah, A., Li, C., Mustonen, P., Susoma, J., Manoocheri, F., Riikonen, J., and Lipsanen, H., 2D materials 4, (2017).Google Scholar
Kang, M. H., Prieto, L. O., Chen, B., Teo, K., Williams, J. A., Milne, W. I., and Cole, M. T., ACS Appl. Mater. Interfaces 8, 2250622515 (2016).CrossRefGoogle Scholar
Xing, W., Lalwani, G., Rusakova, I., and Sitharaman, B., Part. Part. Syst. Charact 31, 745750 (2014).CrossRefGoogle Scholar
Ferrari, A. C. and Basko, D. M., Nature Nanotech. 8, 235246 (2013).CrossRefGoogle Scholar
Kwon, K. C., Choi, K. S., Kim, C., and Kim, S. Y., J. Phys. Chem. C 118, 81878193 (2014).CrossRefGoogle Scholar