Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:45:48.993Z Has data issue: false hasContentIssue false

Theoretical and experimental investigation of point defects in cubic boron nitride

Published online by Cambridge University Press:  16 January 2017

Nicholas L. McDougall*
Affiliation:
Physics, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
Jim G. Partridge
Affiliation:
Physics, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
Desmond W. M. Lau
Affiliation:
ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
Philipp Reineck
Affiliation:
ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
Brant C. Gibson
Affiliation:
ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
Takeshi Ohshima
Affiliation:
Japan Atomic Energy Research Institute, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan.
Dougal G. McCulloch
Affiliation:
Physics, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia.
Get access

Abstract

Cubic boron nitride (cBN) is a synthetic wide band gap material that has attracted attention due to its high thermal conductivity, optical transparency and optical emission. In this work, defects in cBN have been investigated using experimental and theoretical X-ray absorption near edge structure (XANES). Vacancy and O substitutional defects were considered, with O substituted at the N site (ON) to be the most energetically favorable. All defects produce unique signatures in either the B or N K-edges and can thus be identified using XANES. The calculations coupled with electron-irradiation / annealing experiments strongly suggest that ON is the dominant defect in irradiated cBN and remains after annealing. This defect is a likely source of optical emission in cBN.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, W. J., Chong, Y. M., Bello, I. and Lee, S. T., J. Phys. D. 40, 20 (2007).Google Scholar
Mishima, O., Era, K., Tanaka, J. and Yamaoka, S., Appl. Phys. Lett. 53, 11, (1988).Google Scholar
Mohammad, S. N., Solid-State Electron. 46, 2 (2002).Google Scholar
Watanabe, K., Taniguchi, T. and Kanda, H., Phys. Status Solidi A. 201, 11 (2004).Google Scholar
Krasheninnikov, A. V. and Nordlund, K., J. Appl. Phys. 107, 7 (2010).Google Scholar
Zinkle, S. J. and Kinoshita, C., J. Nucl. Mater. 251 (1997).Google Scholar
Davies, G., Lawson, S. C., Collins, A. T., Mainwood, A. and Sharp, S. J., Phys. Rev. B. 46, 20 (1992).Google Scholar
Jelezko, F. and Wrachtrup, J., Phys. Status Solidi A. 203, 13 (2006).Google Scholar
Shishonok, E. M. and Steeds, J. W., Diam. Relat. Mater. 11, 10 (2002).CrossRefGoogle Scholar
Erasmus, R. M. and Comins, J. D., Phys. Status Solidi C. 1, 9 (2004).CrossRefGoogle Scholar
Zaitsev, A. M., Melnikov, A. A., Shiplo, V. B. and Shishonok, E. M., Phys. Status Solidi A. 94, 2 (1986).Google Scholar
Shishonok, E. M. and Steeds, J. W., Phys. Solid State. 46, 6 (2004).CrossRefGoogle Scholar
Stöhr, J., in NEXAFS Spectroscopy, (Springer-Verlag: New York, 1992) p. 5.Google Scholar
Ravel, B. and Newville, M., J. Synchrotron Radiat. 12 (2005).Google Scholar
Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K. and Payne, M. C., Z. Kristallogr. 220, 56 (2005).Google Scholar
Gao, S. P., Pickard, C. J., Perlov, A. and Milman, V., J. Phys.-Condens Mat. 21, 10 (2009).Google Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B. 13, 12 (1976).Google Scholar
McCulloch, D. G., Lau, D. W. M., Nicholls, R. J. and Perkins, J. M., Micron, 43, 1 (2012).Google Scholar
Morris, A. J., Nicholls, R. J., Pickard, C. J. and Yates, J. R., Comput. Phys. Commun. 185, 5 (2014).Google Scholar
Yates, J. R., Wang, X. J., Vanderbilt, D. and Souza, I., Phys. Rev. B. 75, 19 (2007).Google Scholar
Stöhr, J., in NEXAFS Spectroscopy, (Springer-Verlag: New York, 1992) p. 23.Google Scholar
Li, Y. B., Cheng, T. Y., Wang, X., Jiang, H. X., Yang, H. S. and J.Nose, K., J. Appl. Phys. 116, 4 (2014).Google Scholar
McDougall, N. L., Nicholls, R. J., Partridge, J. G. and McCulloch, D. G., Microsc. Microanal. 20, 4 (2014).Google Scholar
Peter, R., Bozanic, A., Petravic, M., Chen, Y., Fan, L. J. and Yang, Y. W., J. Appl. Phys. 106, 8 (2009).Google Scholar
MacNaughton, J. B., Moewes, A., Wilks, R. G., Zhou, X. T., Sham, T. K., Taniguchi, T., Watanabe, K., Chan, C. Y., Zhang, W. J., Bello, I., Lee, S. T. and Hofsass, H., Phys. Rev. B. 72, 19 (2005).Google Scholar
Li, D., Bancroft, G. M. and Fleet, M. E., J. Electron Spectrosc. 79 (1996).Google Scholar
Orellana, W. and Chacham, H., Phys. Rev. B. 63, 12 (2001).Google Scholar