Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T00:56:26.379Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Cordierite, Mullite and Cordierite-Mullite Ceramic Materials using Coal Fly Ash as Raw Material

Published online by Cambridge University Press:  09 January 2018

J. López-Cuevas*
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, Ramos Arizpe, Coahuila, México, CP 25900
E. Interial-Orejón
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, Ramos Arizpe, Coahuila, México, CP 25900
C.A. Gutiérrez-Chavarría
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, Ramos Arizpe, Coahuila, México, CP 25900
J.C. Rendón-Ángeles
Affiliation:
CINVESTAV-IPN, Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, Ramos Arizpe, Coahuila, México, CP 25900
*
*Corresponding author; Tel. +52 844 4389600; E-mail address: jorge.lopez@cinvestav.edu.mx
Get access

Abstract

Cordierite (Mg2Al4Si5O18), Mullite (Al4+2xSi2-2xO10-x) and Cordierite-Mullite ceramic materials were obtained from a stoichiometric mixture of coal fly ash (CFA) as a source of SiO2 and Al2O3, plus high-purity MgO and Al2O3. The starting stoichiometric mixtures were homogenized, and then uniaxially pressed, cold isostatically pressed, and sintered at 1200-1600 °C for 2-5 h. The sintered materials were characterized by X-ray diffraction, scanning electron microscopy, Vickers microhardness, density and four-point flexural strength. In general, the desired phases tended to form in the composites at temperatures of 1350 or 1400 °C, with a considerable amount of glassy phase developing from 3 h onwards at one of those two temperatures, depending on the composite composition. The microstructure of the composites consisted of a matrix of Cordierite and interwoven needles of Mullite. The bulk density decreased, while the flexural strength and the Vickers microhardness increased with increasing nominal content of Mullite in the composites. A synergistic effect taking place between Cordierite and Mullite enhances the mechanical properties of the composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bergeron, C.G. and Risbud, S.H., Introduction to Phase Equilibria in Ceramics, (The American Ceramic Society, USA, 1984) pp. 114116 Google Scholar
Cameron, W.E., Am. Mineral. 62, 747755 (1977)Google Scholar
Hajjou, H., Saâdi, L. and Waqif, M., Arabian J. Geosci. 10(16), 359 (2017)Google Scholar
Chen, J.F., Guo, G.P. and Shao, L.Y., Adv. Mater. Res. 399, 12041207 (2012)Google Scholar
Ogiwara, T., Noda, Y. and Kimura, O., J. Ceram. Soc. Jpn. 118, 231235 (2010)CrossRefGoogle Scholar
Yao, Z., Tan, S., Xia, M., Ye, Y. and Li, J., Waste Manage. Res. 29(10), 10901097 (2010)Google Scholar
Goren, R., Ozgur, C. and Gocmez, H., Ceram. Int. 32(1), 5356 (2006)CrossRefGoogle Scholar
Kim, S.J., Bang, H.G. and Park, S.Y., J. Korean Ceram. Soc. 43(6), 344350 (2006)Google Scholar
Kim, S.J., Bang, H.G. and Park, S.Y., J. Korean Ceram. Soc. 43(6), 351357 (2006)Google Scholar
He, Y., Cheng, W. and Cai, H., J. Hazard. Mater. 120(1-3), 265269 (2005)Google Scholar
Shao, H., Liang, K., Zhou, F., Wang, G. and Peng, F., J. Non-Cryst. Solids 337(2), 157160 (2004)Google Scholar
Kumar, S., Singh, K.K. and Ramachandrarao, P., J. Mater. Sci. Lett. 19(14), 12631265 (2000)Google Scholar
Sampathkumar, N.N., Umarji, A.M. and Chandrasekhar, B.K., Mater. Res. Bull. 30(9), 11071114 (1995)CrossRefGoogle Scholar
Lee, J.H., Choi, H.J., Yoon, S.Y., Kim, B.K. and Park, H.C., J. Porous Mater. 20, 219–26 (2013)Google Scholar
Li, S., Du, H., Guo, A., Xu, H. and Yang, D., Ceram. Int. 38, 10271032 (2012)Google Scholar
Dong, Y., Hampshire, S., Zhou, J., Ji, Z., Wang, J. and Meng, G., J. Eur. Ceram. Soc. 31, 687–95 (2011)Google Scholar
Dong, Y., Hampshire, S., Zhou, J.E., Lin, B., Ji, Z., Zhang, X. and Meng, G., J. Hazard. Mater. 180(1), 173180 (2010)Google Scholar
Guo, A., Liu, J., Xu, R., Xu, H. and Wang, C., Fuel 89, 36303636 (2010)CrossRefGoogle Scholar
Dong, Y., Zhou, J., Lin, B., Wang, Y., Wang, S., Miao, L., Lang, Y., Liu, X. and Meng, G., J. Hazard. Mater. 172(1), 180186 (2009)CrossRefGoogle Scholar
Ma, X., Yao, X. and Hua, S.D., Adv. Mater. Res. 79, 20192022 (2009)Google Scholar
Suriyanarayanan, N., Kannan Nithin, K.V. and Bernardo, E., J. Non-Oxide Glasses 1(4), 247260 (2009)Google Scholar
Li, J.-H., Ma, H.-W. and Huang, W.-H., J. Hazard. Mater. 166, 15351539 (2009)Google Scholar
Dong, Y., Feng, X., Feng, X., Ding, Y., Liu, X. and Meng, G., J. Alloys Compd. 460(1), 599606 (2008)Google Scholar
Dong, Y., Diwu, J., Feng, X., Feng, X., Liu, X. and Meng, G., J. Alloys Compd. 460, 651657 (2008)CrossRefGoogle Scholar
Park, Y.M., Yang, T.Y., Yoon, S.Y., Stevens, R. and Park, H.C., J. Mater. Sci. Eng. A 454-455, 518522 (2007)Google Scholar
Jung, J.S., Park, H.C. and Stevens, R., J. Mater. Sci. 20, 10891091 (2001)Google Scholar
Ramezani, A., Emami, S.M. and Nemat, S., J. Hazard. Mater. 338, 177185 (2017)CrossRefGoogle Scholar
Albhilil, A.A., , M.P. and Kozankova, J., Acta Chim. Slovaca 6(1), 17 (2013)Google Scholar
Takahashi, J., Natsuisaka, M. and Shimada, S., J. Eur. Ceram. Soc. 22(4), 479485 (2002)Google Scholar
Takahashi, J., Kawai, Y. and Shimada, S., J. Eur. Ceram. Soc. 22(12), 19591969 (2002)Google Scholar
Ferraris, M., Salvo, M. and Smeacetto, F., J. Eur. Ceram. Soc. 22(13), 23432347 (2002)Google Scholar
Lee, S.-H., Lee, C.-H. and Lee, S.-J., Compos. Sci. Technol. 62(3), 469475 (2002)Google Scholar
Camerucci, M.A., Urretavizcaya, G. and Cavalieri, A.L., J. Eur. Ceram. Soc. 21(9), 11951204 (2001)Google Scholar
Camerucci, M.A., Urretavizcaya, G., Castro, M.S. and Cavalieri, A.L., J. Eur. Ceram. Soc. 21(16), 29172923 (2001)Google Scholar
Ebadzadeh, T. and Lee, W.E., J. Eur. Ceram. Soc. 18(7), 837848 (1998)Google Scholar
Camerucci, M.A., Cavalieri, A.L. and Moreno, R., J. Eur. Ceram. Soc. 18(14), 21492157 (1998)Google Scholar
Rüdinger, B. and Fischer, R.X., Eur. J. Mineral. 9(6), 12571276 (1997)Google Scholar
Ibrahim, D.M., Naga, S.M., Kader, Z.A., Salam, E.A., Ceram. Int. 21(4), 265269 (1995)Google Scholar
Beecher, S.C. and Onn, D.G., Thermochim. Acta 218, 2772893 (1993)Google Scholar
Hodge, J.D., Am, J.. Ceram. Soc. 72(7), 12951298 (1989)Google Scholar
Ramos-Ramírez, M.V., López-Cuevas, J., Rodríguez-Galicia, J.L. and Rendón-Angeles, J.C., Bol. Soc. Esp. Ceram. Vidrio 53(4), 179193 (2014)Google Scholar
Sultana, P., Das, S., Bhattacharya, A., Basu, R. and Nandy, P., Rev. Adv. Mater. Sci. 27, 6974 (2011)Google Scholar