Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:45:17.551Z Has data issue: false hasContentIssue false

Structure-Function Correlation of Photoactive Ionic pi-Conjugated Binary Porphyrin Assemblies

Published online by Cambridge University Press:  31 January 2017

Morteza Adinehnia
Affiliation:
Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA 99164-4630, USA.
Bryan Borders
Affiliation:
Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA 99164-4630, USA.
Michael Ruf
Affiliation:
Bruker AXS Inc., Madison, WI, 53711, USA.
Bhaskar Chilukuri
Affiliation:
Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA 99164-4630, USA.
Ursula Mazur
Affiliation:
Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA 99164-4630, USA.
K.W. Hipps*
Affiliation:
Department of Chemistry and Materials Science and Engineering Program, Washington State University, Pullman, WA 99164-4630, USA.
*
*(Email: hipps@wsu.edu)
Get access

Abstract

We present the first detailed structure-function study of a photoconducting ionic porphyrin supermolecular assembly, fabricated from tetra(N-methyl-4-pyridyl)porphyrin (TMPyP) and tetra(4-sulfonatophenyl)porphyrin (TSPP) in a 1:1 stoichiometric ratio. Rod like crystals large enough for single crystal diffraction studies were grown by utilizing a nucleation and growth model described in our previous work. The unit cell of the TMPyP:TSPP crystals is monoclinic P21/c and the cell constants are a = 8.3049(11) Å, b = 16.413(2) Å, c = 29.185(3) Å, β = 92.477(9)°. These crystals have smooth well defined facets and their internal structure consists of highly organized molecular columns of alternating porphyrin cations and anions that are stacked face to face. For the first time crystal morphology (habit) of an ionic porphyrin solid is predicted by using the crystal structure data and applying attachment energy (AE) model. The predicted habit is in good agreement with the experimental structural morphology observed in AFM and SEM images of the TMPyP:TSPP crystalline solid. The TMPyP:TSPP crystals are non-conducting in the dark and are photoconducting. The photoconductive response is significantly faster with excitation in the Q-band (Red) than with excitation in the Soret band (blue). DFT calculations were performed to determine their electronic band structure and density of states. The TMPyP:TSPP crystalline system is a useful model structure that combine the elements of molecular organization and morphology along with theory and correlate them with electronic and optical electronic properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jou, J.H., Kumar, S., Agrawal, A., Li, T. H., Sahoo, S., J. Mater. Chem C 3, 2974 (2015).CrossRefGoogle Scholar
Muccini, M., Nature Materials 5, 605 (2006).CrossRefGoogle Scholar
Lennartson, A., Roffey, A., Moth-Poulsen, K., Tetrahederon Let. 56, 1557 (2015).Google Scholar
Ishihara, S., Labuta, J., Van Rossom, V., Ishikawa, D., Minami, K., Hill, J.P., Ariga, K., Phys. Chem. Chem. Phys. 16, 9713 (2014).CrossRefGoogle Scholar
Ragoussi, M.E., de la Torre, G., Torres, T., Eur. J. Org. Chem. 14, 2832 (2013).CrossRefGoogle Scholar
Imahori, H., Umeyama, T., Ito, S., Acc. Chem. Res. 42, 1809 (2009).Google Scholar
Nisato, G., Hauch, J., in Organic Photovoltaics, edited by Brabec, C. (Wiley-VCH Verlag GmbH & Co. KGaA, 2014), p. 587.CrossRefGoogle Scholar
Jurow, M., Schuckman, M.; A.E., Batteas, J.D., Drain, C.M., Coord. Chem. Rev. 254, 2297 (2010).CrossRefGoogle Scholar
Franco, R., Jacobsen, J.L., Wang, H.R., Wang, Z.C., Istvan, K., Schore, N.E., Song, Y.J., Medforth, C.J., Shelnutt, J.A., Phys. Chem. Chem. Phys., 12, 4072 (2010).CrossRefGoogle Scholar
Tian, Y.; Beavers, C. M., Busani, T., Martin, K.E., Jacobsen, J. L., Mercado, B.Q., Swartzentruber, B.S., van Swol, F., Medforth, C.J., Shelnutt, J.A., Nanoscale 4, 1695(2012).Google Scholar
Chen, Y., Li, A., Huang, Z.H., Wang, L.N., Kang, F., Nanomaterials 6, 51 (2016).Google Scholar
Qiu, Y., Chen, P., Liu, M., J. Am. Chem. Soc. 132, 9644 (2010).Google Scholar
Eskelsen, J.R., Phillips, K.J., Hipps, K.W., Mazur, U., Chem. Commun. 51, 2663 (2015).Google Scholar
Wang, Z., Medforth, C.J., Shelnutt, A. J., J. Am. Chem. Soc. 126, 15954 (2004).Google Scholar
Eskelsen, J.R., Wang, Y., Qi, Y., Ray, M., Handlin, M., Hipps, K.W., Mazur, U., J. Porph. Phthal. 16, 1233 (2012).CrossRefGoogle Scholar
Adinehnia, M., Mazur, U., Hipps, K.W., Cryst. Growth Des. 14, 6599 (2014).Google Scholar
Scheldt, W.R., Cheng, B., Oliver, A.G., Goodwin, J.A., J. Porph. Phthal. 19, 1256 (2015).Google Scholar
Yamada, Y., Matsumoto, S., Yamada, K., Nishino, T., Mihara, N., Sugimoto, K., Kanaka, K., Chem. Lett. 43, 1377 (2014).CrossRefGoogle Scholar
Chiang, P.P., Donohue, M.D., J. Colloid Interface Sci. 122, 230 (1988).CrossRefGoogle Scholar
Stoica, C., Verwer, P., Meekes, H., van Hoof, P.J., Kaspersen, F.M., Vlieg, E., Cryst. Growth Des. 4, 765 (2004).Google Scholar
Horst, J.H., Geertman, R.M., van Rosmalen, G.M., J. Cryst. Growth 230, 277 (2001).Google Scholar
Hartman, P., Bennema, P., J. Cryst. Growth 49, 145 (1980).CrossRefGoogle Scholar
Born, M., in Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen: Fünfter Band: Physik, edited by Sommerfeld, A. (Vieweg+Teubner Verlag: Wiesbaden, 1926), p. 527.Google Scholar
Hartman, P., Perdok, W.G., Acta Crystallogr. 8, 521 (1955).Google Scholar
Kresse, G., Furthmüller, J., Comp. Mater. Sci. 6, 15 (1996).Google Scholar
Kresse, G., Furthmüller, J., J. Phys. Rev. B 54, 11169 (1996).Google Scholar
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Kresse, G., Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
Blöchl, P.E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Adinehnia, M., Borders, B., Ruf, M., Chilukuri, B., Hipps, K.W., Mazur, U., J. Mater. Chem. C, 3, 2974 (2016).Google Scholar
Rose, A., Concepts in Photoconductivity and Allied Problems. (Wiley: New York, London, 1963).Google Scholar