No CrossRef data available.
Published online by Cambridge University Press: 19 December 2016
AlGaN based multiple quantum wells (MQWs) were grown on 8° vicinal 4H p-SiC substrates by plasma-assisted molecular beam epitaxy. The MQWs were designed to emit near 300 nm using the wurtzite k.p model. The MQW periodicity and strain state were measured with X-ray diffraction. The optical properties were characterized with temperature dependent photoluminescence (PL). The internal quantum efficiency was estimated from the ratio of room temperature to 18K integrated PL intensity. Internal quantum efficiency up to 48% was achieved. These data are encouraging for future vertical and inverted ultraviolet light emitting diodes grown on p-SiC substrates.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.