Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:22:50.312Z Has data issue: false hasContentIssue false

Spectroscopy of Palladium Nanoparticle Synthesis: Tailoring Nanoparticle Growth Parameters for Hydrogen Storage

Published online by Cambridge University Press:  27 April 2020

Amanda L. Houk*
Affiliation:
Savannah River National Laboratory, Aiken, SC 29808, U.S.A.
Levi R. Houk*
Affiliation:
Savannah River National Laboratory, Aiken, SC 29808, U.S.A.
Get access

Abstract

Using palladium for hydrogen storage requires palladium (Pd) particles exhibiting specific parameters, including surface area, particle size, and particle shape, with increased interest in palladium nanoparticles (Pd NPs). In order to routinely monitor the synthesis of these particles a spectroscopic method is being developed using infrared (IR), Raman, and UV-Vis spectroscopy. By monitoring the production of Pd NPs, the growth of the NPs can be controlled to ensure quality of the product to match the desired finished particle specifications. For the reaction presented, the conversion of the intermediate tetraamminepalladium(II) chloride (PTC) to diamminepalladium(II) chloride (PDC) can influence the Pd NPs properties. This study is first being developed in lab bench scale quantities to allow ultimate control of the Pd NPs.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lewis, F. A., Platinum Metals Rev . 26 (1), 20 (1982).Google Scholar
Adams, B. D. and Chen, A., Mater. Today 14 (6), 282 (2011).CrossRefGoogle Scholar
Huang, H., Bao, S., Chen, Q., Yang, Y., Jiang, Z., Kuang, Q., Wu, X., Xie, Z. and Zheng, L., Nano Res . 8 (8), 2698 (2015).10.1007/s12274-015-0776-0CrossRefGoogle Scholar
Valencia, F. J., González, R. I., Tramontina, D., Rogan, J., Valdivia, J. A., Kiwi, M. and Bringa, E. M., J. Phys. Chem. C 120 (41), 23836 (2016).CrossRefGoogle Scholar
Kishore, S., Nelson, J. A., Adair, J. H. and Eklund, P. C., J. Alloys Compd. 389 (1), 234 (2005).10.1016/j.jallcom.2004.06.105CrossRefGoogle Scholar
Yamauchi, M., Ikeda, R., Kitagawa, H. and Takata, M., J. Phys. Chem. C 112 (9), 3294 (2008).CrossRefGoogle Scholar
Konda, S. K. and Chen, A., Mater. Today 19 (2), 100 (2016).CrossRefGoogle Scholar
Baldwin, D. P., Zamzow, D. S., Vigil, R. D. and Pikturna, J. T., Report No. IS-5149, 2001.Google Scholar
Perry, C. H., Athans, D. P., Young, E. F., Durig, J. R. and Mitchell, B. R., Spectrochim. Acta A 23 (4), 1137 (1967).CrossRefGoogle Scholar
Schmidt, K. H. and Müller, A., J. Mol. Struct. 22 (3), 343 (1974).CrossRefGoogle Scholar
Manfait, M., Alix, A. J. P. and Delaunay-Zeches, J., Inorg. Chim. Acta 44 L261 (1980).CrossRefGoogle Scholar
Oh, Y.-J., Cho, S. M. and Chung, C.-H., J. Electrochem. Soc. 152 (6), C348 (2005).CrossRefGoogle Scholar
Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2008) p. 409.Google Scholar
Layton, R., Sink, D. W. and Durig, J. R., J. Inorg. Nucl. Chem. 28 (9), 1965 (1966).CrossRefGoogle Scholar
Fiuza, S. M., Amado, A. M., Santos, H. F. D., Marques, M. P. M. and Carvalho, L. A. E. B. d., Phys. Chem. Chem. Phys. 12 (42), 14309 (2010).CrossRefGoogle Scholar