Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T05:41:50.172Z Has data issue: false hasContentIssue false

Self-aligned Copper Oxide Passivation Layer – A Study on the Reliability Effect

Published online by Cambridge University Press:  14 July 2020

Jia Quan Su
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, Texas77843, U.S.A.
Yue Kuo
Affiliation:
Thin Film Nano & Microelectronics Research Laboratory, Texas A&M University, College Station, Texas77843, U.S.A.
Get access

Abstract

The reliability of the plasma etched copper lines with the self-aligned copper oxide passivation layer has been studied with the electromigration stress method. The oxide passivation layer was prepared by plasma oxidation, which covers the entire exposed copper line to prevent the surface oxidation under the ambient condition. The void formation and growth process reflect the line broken mechanism. Voids formed from grain boundary depletion and grain thinning were monitored by optical microscopes. The line failure times with respect to line width and current density were measured. The addition of the oxide passivation layer shortened the lifetime due to the poor heat transfer and copper diffusion, which accelerated the formation and growth of the voids. The narrow line has a longer lifetime than the wide line because of the fewer grain boundaries for flux divergence to form voids. The copper oxide passivation layer was formed self-aligned to the copper line. It also gettered copper atoms diffused from the bulk copper film.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

National Technology Roadmap for Semiconductors (NTRS), SIA, (1997).Google Scholar
Kuo, Y., ECS Interface, 22(1), 55-61 (2013).Google Scholar
Proost, J., Hirato, T., Furuhara, T., Maex, K. and Celis, J.-P., J. Appl. Phys., 87(6), 2792-2802 (2000).Google Scholar
Hau-Riege, C. S., Hau-Riege, S. P. and Marathe, A. P., J. Appl. Phys., 96(10), 5792-5796 (2004).Google Scholar
Yu, C., Fazan, P. C., Mathews, V. K. and Doan, T. T., Appl. Phys. Lett., 61(11), 1344-1346 (1992).CrossRefGoogle Scholar
Fayolle, M. and Romagna, F., Microelectronic Eng., 37, 135-141 (1997).CrossRefGoogle Scholar
Chang, R., Cao, Y. and Spanos, C. J., IEEE Trans. on Electron Dev., 51(10), 1577-1583 (2004).CrossRefGoogle Scholar
Schaible, P. M., Metzger, W. C. and Anderson, J. P., J. Vacuum Science and Technology, 15(2), 334-337 (1978).CrossRefGoogle Scholar
Danner, D. A., Dalvie, M. and Hess, D. W., J. Electrochem. Soc., 134(3), 669-673 (1987).CrossRefGoogle Scholar
Kuo, Y. and Crowe, J.R., J. Vacuum Science and Technology A, 8(3), 1529-1532 (1990).CrossRefGoogle Scholar
Riley, P. E., J. Electrochem. Soc., 140(5), 1518-1522 (1993).CrossRefGoogle Scholar
Cooperberg, D. J., Vahedi, V. and Gottscho, R. A., J. Vacuum Science and Technology A, 20(5), 1536-1556 (2002).CrossRefGoogle Scholar
Cardinaud, C., Peignon, M.-C. and Tessier, P.-Y., Appl. Surface Sci., 164(1-4), 72-83 (2000).CrossRefGoogle Scholar
Miyazaki, H., Takeda, K., Sakuma, N., Kondo, S., Homma, Y. and Hinode, K.., J. Vacuum Science and Technology B, 15(2), 237-240 (1997).Google Scholar
Kuo, Y. and Lee, S., Japan J. of Appl. Phys., 39(3A), L188 (2000).CrossRefGoogle Scholar
Lee, S. and Kuo, Y., J. Electrochem. Soc., 148(9), G524-G529 (2001).CrossRefGoogle Scholar
Kuo, Y. and Lee, S., Appl. Phys. Lett., 78(7), 1002-1004 (2001).CrossRefGoogle Scholar
Kuo, Y. and Lee, S., Vacuum 74(3-4), 473-477 (2004).Google Scholar
Kuo, Y., Proc. 6th Intl. Conf. Reactive Plasmas & 23rd Symp. Plasma Processing, 29-30 (2006).Google Scholar
Yang, J., Ahn, Y., Bang, J., Ryu, W., Kim, J., Kang, J., Yang, M. S., Kang, I. and Cung, I., ECS Trans., 16(9), 13 (2008).CrossRefGoogle Scholar
Kuo, Y., Su, J. Q., Li, M. and Yuan, T., XXXIV International Conference on Phenomena in Ionized Gases (XXXIV ICPIG), 10th International Conference on Reactive Plasmas (ICRP-10), Abst. OR19AM-B02, Sapporo, Hokkaido, Japan, July 14-19 (2019).Google Scholar
Liu, G. and Kuo, Y., J. Electrochem. Soc., 156(7), H579-H589 (2009).CrossRefGoogle Scholar
Li, M. and Kuo, Y., ECS. Trans., 86(8), 41-47 (2018).CrossRefGoogle Scholar
Hau-Riege, C. S., Microelectronics Reliability, 44(2), 195-205 (2004).CrossRefGoogle Scholar
Hinshelwood, C. N., Proceedings of the Royal Society of London, Series A, 102(716), 318-328 (1922).Google Scholar
Nath, P. and Chopra, K. L., Thin Solid Films, 20(1), 53-62 (1974).CrossRefGoogle Scholar
Gong, Y. S., Lee, C., and Yang, C. K., J. Appl. Phys., 77(10), 5422-5425 (1995).CrossRefGoogle Scholar
Hinode, K., Hanaoka, Y., Takeda, K. and Kondo, S., Japan J. of Appl. Phys., 40(10B), L1097 (2001).CrossRefGoogle Scholar
Momcilovic, M., Trtica, M., Ciganovic, J., Savovic, J., Stasic, J. and Kuzmanovic, M., Appl. Surface Science, 270, 486-494 (2013).CrossRefGoogle Scholar
Li, M., Su, J. Q. and Kuo, Y., ECS. Trans., 89(3), 87-92 (2019).Google Scholar
Su, J. Q., Li, M. and Kuo, Y., ECS. Trans., 90(1), 65-72 (2019).CrossRefGoogle Scholar
Li, M., Su, J. Q. and Kuo, Y., ECS. Trans., 92(5), 9-16 (2019).CrossRefGoogle Scholar
Su, J. Q., Li, M., Kuo, Y. and Hamaguchi, S., ECS. Trans., 92(5), 39-46 (2019).CrossRefGoogle Scholar
Kuo, Y., J. Electrochem. Soc., 137(6), 1907-1911 (1990).CrossRefGoogle Scholar
Kuo, Y. and Crowe, J. R., J. Vacuum Science and Technology A, 8(3), 1529-1532 (1990).CrossRefGoogle Scholar
Ryu, C., Lee, H., Kwon, K.-W., Loke, A. LS. and Wong, S. S., Solid State Technology, 42(4), 53-56 (1999).Google Scholar
Chuang, J.-C., Tu, S.-L. and Chen, M.-C., Thin Solid Films, 346(1-2), 299-306 (1999).CrossRefGoogle Scholar
Song, S., Liu, Y., Mao, D., Ling, H. and Li, M., Thin Solid Films, 476(1), 142-147 (2005).CrossRefGoogle Scholar
Liu, G. and Kuo, Y., J. Electrochem. Soc., 154(7), H653-H658 (2007).CrossRefGoogle Scholar
Kang, M. C., Kim, Y. J. and Kim, J. J., Electrochemical and Solid-State Letters. 12(9), H340-H343 (2009).CrossRefGoogle Scholar
Hu, C-K., Gignac, L., Liniger, E., Herbst, B., Rath, D. L., Chen, S. T., Kaldor, S., Simon, A. and Tseng, W.-T., Appl. Phys. Lett., 83(5), 869-871 (2003).CrossRefGoogle Scholar
Kodama, T., Takagi, N., Kawai, S., Nasu, Y., Yanagisawa, S. and Asama, K., IEEE Electr. Device L., 3(7), 187-189 (1982).Google Scholar
Yachi, T. and Yamauchi, N., IEEE T. Electron Dev., 29(2), 243-247 (1982).CrossRefGoogle Scholar
Fan, C.-L., Shang, M.-C., Li, B.-J., Lin, Y.-Z., Wang, S.-J., Lee, W.-D. and Hung, B.-R., Materials, 8(4), 1704-1713 (2015).Google Scholar
Su, J. Q. and Kuo, Y., ECS Trans., 97(3), 51-60 (2020).CrossRefGoogle Scholar
Hu, M., Novo, C., Funston, A., Wang, H., Staleva, H., Zou, S., Mulvaney, P., Xia, Y. and Hartland, G. V., J. Mater. Chem., 18(17), 1949-1960 (2008).CrossRefGoogle Scholar
Hu, R., Yong, K.-T., Roy, I., Ding, H., He, S. and Prasad, P. N., J. Phys. Chem. C, 113(7), 2676-2684 (2009).CrossRefGoogle Scholar
Bu, X., Chen, H., Gai, H., Yang, R. and Yeung, E. S., Anal. Chem., 81(17), 7507-7509 (2009).CrossRefGoogle Scholar
Mercatelli, R., Romano, G., Ratto, F., Matteini, P., Centi, S., Cialdai, F., Monici, M., Pini, R. and Fusi, F., Appl. Phys. Lett., 99(13), 131113 (2011).CrossRefGoogle Scholar
Erck, R. A., Potter, D. I. and Wiedersich, H., J. Nucl. Mater., 80(1), 120-125 (1979).Google Scholar
O'Connor, K. M. and Wool, R. P., J. Appl. Phys., 51(10), 5075-5079 (1980).CrossRefGoogle Scholar
Lundstrom, T. S., Gebart, B. R. and Lundemo, C. Y., J. Reinf. Plast. Comp., 12(12), 1339-1349 (1993).CrossRefGoogle Scholar
Lubarda, V. A., Schneider, M. S., Kalantar, D. H., Remington, B. A. and Meyers, M. A., Acta Materialia, 52(6), 1397-1408 (2004).CrossRefGoogle Scholar
Liu, G., Process and reliability assessment of plasma-based copper etch process. Texas A&M University (2008).Google Scholar
Hu, C.-K., Gignac, L. and Rosenberg, R., Microelectronics Reliability, 46(2-4), 213-231 (2006).CrossRefGoogle Scholar
Raghavan, G., Chiang, C., Anders, P. B., Tzeng, S.-M., Villasol, R., Bai, G., Bohr, M. and Fraser, D. B., Thin Solid Films, 262(1-2), 168-176 (1995).CrossRefGoogle Scholar
Lee, K.-D., Ogawa, E. T., Matsuhashi, H., Justison, P. R., Ko, K.-S. and Ho, P. S., Appl. Phys. Lett., 79(20), 3236-3238 (2001).CrossRefGoogle Scholar
Lee, H.-D., Kim, J.-O. and Chung, J.-W., Desalin. Water Treat., 53(10), 2767-2773 (2015).CrossRefGoogle Scholar
Chu, J.-T., Huang, H.-W., Kao, C.-C., Liang, W.-D., Lai, F.-I., Chu, C.-F., Kuo, H.-C. and Wang, S.-C., Jpn. J. Appl. Phys., 44(4B), 2509-2511 (2005).CrossRefGoogle Scholar
Zoolfakar, A. S., Rani, R. A., Morfa, A. J., O'Mullane, A. P. and Kalantar-Zadeh, K., J. Mater. Chem. C, 2(27), 5247-5270 (2014).Google Scholar
Liu, M.-S., Lin, M. C.-C., Huang, I.-T. and Wang, C.-C., Chem. Eng. Technol., 29(1), 72-77 (2006).CrossRefGoogle Scholar
Subramaniyan, A. and Ilangovan, R., Int. J. Nanosci. Nanotechnol., 11(1), 59-62 (2015).Google Scholar
D'Heurle, F. M., Proceedings of the IEEE, 59(10), 1409-1418 (1971).CrossRefGoogle Scholar