Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:54:23.988Z Has data issue: false hasContentIssue false

RapidNano: Towards 20nm Particle Detection on EUV Mask Blanks

Published online by Cambridge University Press:  02 May 2016

Jacques van der Donck*
Affiliation:
TNO, P.O. Box 155, 2600 AD, Delft, The Netherlands.
Peter Bussink
Affiliation:
TNO, P.O. Box 155, 2600 AD, Delft, The Netherlands.
Erik Fritz
Affiliation:
TNO, P.O. Box 155, 2600 AD, Delft, The Netherlands.
Peter van der Walle
Affiliation:
TNO, P.O. Box 155, 2600 AD, Delft, The Netherlands.
Get access

Abstract

Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling EUV masks should not add particles larger than 20 nm. Detection methods for 20 nm particles on large area surfaces are needed to qualify the equipment for cleanliness. Detection of 20 nm particles is extremely challenging, not only because of the particle size, but also because of the large surface area and limited available time.

In 2002 TNO developed the RapidNano, a platform that is capable of detecting nanoparticles on flat substrates. Over the last decade, the smallest detectable particle size was decreased while the inspection rate was increased. This effort has led to a stable and affordable detection platform that is capable of inspecting the full surface of a mask blank.

The core of RapidNano is a dark-field imaging technique. Every substrate type has a typical background characteristic, which strongly affects the size of the smallest detectable particle. The noise level is induced by the speckle generated by the surface roughness of the mask. The signal-to-noise ratio can be improved by illuminating the inspection area from nine different angles. This improvement was first shown on test bench level and then applied in the RapidNano3. The RapidNano3 is capable of detecting 42nm latex sphere equivalents (and larger) on silicon surfaces. RapidNano4, the next generation, will use 193 nm light and the same nine angle illumination mode. Camera sensitivity and available laser power determine the achievable throughput. Therefore, special care was given to the optical design, particularly the optical path. With RapidNano4, TNO will push the detection limit of defects on EUV blanks to below 20nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Moore, G.E., Proc. IEEE 86, 1, 8284, 1998 Reprinted from Gordon E. Moore, Electronics, 114–117, April 19, 1965.Google Scholar
Moore, G.E., reprinted from Technical Digest 1975. International Electron Devices Meeting, IEEE, 1113 (1975).Google Scholar
ITRS 2013, Litho_2013 tables.Google Scholar
Yen, A., Presentation EUVL symposium, Washington, October 27th 2014.Google Scholar
Zoldesi, C., Bal, K., Blum, B., Bock, G., Brouns, D., Dhalluin, F., Dziomkina, N., Espinoza, J. Diego Arias, de Hoogh, J., Houweling, S., Jansen, M., Kamali, M., Kempa, A., Kox, R., de Kruif, R., Lima, J., Liu, Y., Meijer, H., Meiling, H., van Mil, I., Reijnen, M., Scaccabarozzi, L., Smith, D., Verbrugge, B., de Winter, L., Xiong, X., Zimmerman, J., Proc. SPIE 9048, 90481N (2014).Google Scholar
Ham, E., van der Donck, J., Mertens, B., Snel, R., Oderwald, M., Lansbergen, R., van den Berg, H., Meiling, H., Meijer, H., Nabben, T., Moors, R., Blum, B., Poster at EUVL Symposium, San Diego, November 7th 2005, Available at: http://www.sematech.org/meetings/archives/litho/euvl/7470/Poster/FinalS1/1-RP-01%20Ham_TNO%20Poster.pdf, accessed on March 21st, 2016.Google Scholar
Brux, O., van der Walle, P., van der Donck, J.C.J., Dress, P., Proc. SPIE, Vol8166, 81662S (2011).Google Scholar
van der Donck, J.C.J., Stortelder, J.K. and Derksen, G.B., Proc. SPIE 8166, 81662T (2011).Google Scholar
Peters, J.H., Tonk, C., Spriegel, D., Han, H.-S., Cho, W., Wurm, S., Proc. SPIE, 6792, 67920F (2008).Google Scholar
Okamoto, A., Kuniyasu, H., and Hattori, T., IEEE Trans. Semiconductor Manufacturing, Vol. 19, NO. 4, 372380, November 2006.Google Scholar
Kearney, P., Cho, W.-I., Jeon, C.-U., Gullikson, E., Jia, A., Tamura, T., Tajima, A., Kusunose, H., Presentation EUVL symposium, Barcelona, 2006.Google Scholar
Shoval, L., Mangan, S., Schwarzband, I., Khristo, S., Babasubramanian, V., Goldstein, S., Brikman, R., Shoshani, N., Proc. SPIE 8322, 832227 (2012).Google Scholar
Staud, W., Holcman, I., Kudriashov, V., Frosien, J., Presentation Frontiers of Characterization and Metrology, Genoble, May 2011.Google Scholar
Miyai, H., Watanabe, H., Presentation EUVL symposium 2015, Maastricht.Google Scholar
Stokowski, S. and Vaez-Iravani, M., Proc. Int. Conf. Characterization Metrology ULSI Technol. 449, 405415 (1998).Google Scholar
Heerens, G.-J., “Container for a mask”, EP1434094A1 (2004).Google Scholar
SEMI M50-0307 (2007).Google Scholar
van der Walle, P., Kumar, P., Ityaksov, D., Versluis, R., Maas, D.J., Kievit, O., Janssen, J., van der Donck, J.C.J., Proc. SPIE 8522, 85222Q (2012).Google Scholar
Goodman, J.W., J. Optical Soc. Amer. 66, 11451150 (1976).Google Scholar
van der Walle, P., Kumar, P., Ityaksov, D., Versluis, R., Maas, D.J., Kievit, O., Janssen, J., van der Donck, J.C.J., Proc. SPIE 8681, 868116 (2013).Google Scholar
van der Walle, P., Hannemann, S., van Eijk, D., Mulckhuyse, W., van der Donck, J.C.J., SPIE Proc. 9050, 905033 (2014).Google Scholar
Bobbert, P.A., and Vlieger, J., Physica 137A 209242 (1986).Google Scholar
Bussink, P., Volatier, J.-B., van der Walle, P., Fritz, E. and van der Donck, J.C.J., poster Frontiers of Characterization and Metrology for Nano Electronics Conference, Dresden, Germany, April 14-16, 2015.Google Scholar
Crowcombe, W., Fritz, E., van der Donck, J.C.J, Koster, N.B., Proc. SPIE 9048, 904831 (2014).Google Scholar
Bussink, P., Volatier, J.-B., van der Walle, P., Fritz, E. and van der Donck, J.C.J., Proc. SPIE 9048 (2016), in press.Google Scholar
Stortelder, J.K., van der Donck, J.C.J., Oostrom, S., van der Walle, P., Brux, O., Dress, P.: Proc. SPIE 7969, 79691Q (2011).CrossRefGoogle Scholar
Wu, C.-C., Hollemans, C.L., Fritz, E.C., Kievit, O. and van der Donck, J.C.J., Poster EUVL Symposium, Washington, October 27-29 2014.Google Scholar
Devore, J.L., in Probability and Statistics for Engineering and the Sciences; 5th edition, (Duxbury, Pacific Grove, 2000), pp. 709714.Google Scholar
Nutsch, A., Supplieth, F., Pfitzner, L., Ryssel, H., Proc. IEEE Int. Symp. Semiconductor Manufacturing, YE212, 245248 (2005).Google Scholar
SEMI E152-0709 (2011).Google Scholar