Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T22:10:40.786Z Has data issue: false hasContentIssue false

Prediction of repeat unit of optimal polymer by Bayesian optimization

Published online by Cambridge University Press:  24 January 2019

Takuya Minami*
Affiliation:
Research Association of High-Throughput Design and Development for Advanced Functional Materials, Tsukuba, Ibaraki305-8568, Japan Showa Denko K.K., Minato-ku, Tokyo105-8518, Japan.
Masaaki Kawata
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki305-8568, Japan
Toshio Fujita
Affiliation:
Research Association of High-Throughput Design and Development for Advanced Functional Materials, Tsukuba, Ibaraki305-8568, Japan Showa Denko K.K., Minato-ku, Tokyo105-8518, Japan.
Katsumi Murofushi
Affiliation:
Showa Denko K.K., Minato-ku, Tokyo105-8518, Japan.
Hiroshi Uchida
Affiliation:
Showa Denko K.K., Minato-ku, Tokyo105-8518, Japan.
Kazuhiro Omori
Affiliation:
Showa Denko K.K., Minato-ku, Tokyo105-8518, Japan.
Yoshishige Okuno
Affiliation:
Showa Denko K.K., Minato-ku, Tokyo105-8518, Japan.
Get access

Abstract

Design processes of functional polymers were accelerated by adopting the Bayesian optimization; the number of trials in the process was substantially reduced. The optimization process was more than forty time accelerated to find out the target polymer compared to the random selection. The optimization efficiency was found to be successfully improved by utilizing the standard deviation of predicted probability distribution of objective function. The performance of the method was robust for dataset size in the analysis; the target polymer could be found even for a small training dataset. The proposed method is a promising tool for the high-performance polymer design, and a wide range of its applications will be expected in the polymer industry.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Rajan, K.. Materials Today, 8, 38 (2005).CrossRefGoogle Scholar
Agrawal, A., Choudhary, A., APL MATERIALS, 4, 053208 (2016).CrossRefGoogle Scholar
Kim, C., Chandrasekaran, A., Huan, T. D., Das, D., Ramprasad, R., J. Phys. Chem. C, 122, 17575 (2018).CrossRefGoogle Scholar
Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M. A., Chae, H. S., Einzinger, M., Ha, D.- G., Wu, T., Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Numata, M., Kim, S., Huang, W., Hong, S. I., Baldo, M., Adams, R. P., Aspuru-Guzik, Alán, Nature Materials, 15, 1120 (2016).CrossRefGoogle Scholar
Brochu, E., Cora, V. M., Freitas, N., arXiv:1012.2599v1.Google Scholar
Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., Tanaka, I., Phys. Rev. Lett., 115, 205901 (2015).CrossRefGoogle Scholar
Jalem, R., Kanamori, K., Takeuchi, I., Nakayama, M., Yamasaki, H., Saito, T., Sci. Rep. 8, 5845 (2018).CrossRefGoogle Scholar
Weininger, D., J. Chem. Inf. Comput. Sci., 28, 31 (1988).CrossRefGoogle Scholar
Minami, T., Okuno, Y., MRS Advances, DOI: 10.1557/adv.2018.454.Google Scholar
Rogers, D., Hahn, M., J. Chem. Inf. Model. 50, 742 (2010).CrossRefGoogle Scholar
RDKit: Open-Source Cheminformatics. Available at http://rdkit.org (accessed 15 April 2017).Google Scholar
Guyon, I., Elisseeff, A., J. Machine Learning Research, 3, 1157 (2003).Google Scholar
Tibshirani, R., J. R. Statist. Soc. B 73, 273 (2011).CrossRefGoogle Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., JMLR., 12, 2825 (2011).Google Scholar
Brochu, E., Cora, V. M., de Freitas, N., arXiv:1012.2599.Google Scholar
PoLyInfo. Available at http://polymer.nims.go.jp (accessed 30 Oct 2017).Google Scholar
Lever, J., Krzywinski, M., Altman, N., Nature Methods, 13, 703 (2016).CrossRefGoogle Scholar