Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:52:19.683Z Has data issue: false hasContentIssue false

Predicting Ga and Cu Profiles in Co-Evaporated Cu(In,Ga)Se2 Using Modified Diffusion Equations and a Spreadsheet

Published online by Cambridge University Press:  15 May 2017

Ingrid L. Repins*
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, U.S.A.
Steve Harvey
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, U.S.A.
Karen Bowers
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, U.S.A.
Stephen Glynn
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, U.S.A.
Lorelle M. Mansfield
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, U.S.A.
Get access

Abstract

Cu(In,Ga)Se2 (CIGS) photovoltaic absorbers frequently develop Ga gradients during growth. These gradients vary as a function of growth recipe, and are important to device performance. Prediction of Ga profiles using classic diffusion equations is not possible because In and Ga atoms occupy the same lattice sites and thus diffuse interdependently, and there is not yet a detailed experimental knowledge of the chemical potential as a function of composition that describes this interaction. We show how diffusion equations can be modified to account for site sharing between In and Ga atoms. The analysis has been implemented in an Excel spreadsheet, and outputs predicted Cu, In, and Ga profiles for entered deposition recipes. A single set of diffusion coefficients and activation energies are chosen, such that simulated elemental profiles track with published data and those from this study. Extent and limits of agreement between elemental profiles predicted from the growth recipes and the spreadsheet tool are demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Repins, I.L., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., and Noufi, R.,Prog. Photovoltaics 16, 235, (2008).Google Scholar
Sridhar, S., Metall. Mater. Trans. A 41A, 543, (2010).CrossRefGoogle Scholar
Ider, M., “Thermochemistry and Phase Diagram Studies in the Cu-In-Ga-Se System,” Ph.D. thesis, University of Florida, (2003).Google Scholar
Hermansson, H.P., Statens Karnkraftinspektion 95, 29, (1995).Google Scholar
Dagan, C., Ciszek, T. F., and Cahen, D., J. Phys. Chem.-US 96, 11009, (1992).CrossRefGoogle Scholar
Djessas, K., Yapi, S., Massé, G., Ibannain, M., and Gauffier, J. L., J. Appl. Phys. 95, 4111, (2004.)Google Scholar
Lundberg, O., Lua, J., Rockett, A., Edoff, M., and Stolt, L., J. Phys. Chem. Solids 64, 1499, (2003).Google Scholar
Marudachalam, M., Birkmire, R.W., Hichri, H., Schultz, J.M., Swartzlander, A., and Al-Jassim, M.M., J. Appl. Phys. 82, 2896, (1997).CrossRefGoogle Scholar
Namnuan, B., Yoodee, K., and Chatraphorn, S., J. Cryst. Growth 432, 24, (2015).CrossRefGoogle Scholar
Rodriguez-Alvarez, H., Mainz, R, Caballero, R., Abou-Ras, D, Klaus, M., Gledhill, S., Weber, A., Kaufmann, C.A., and Schock, H.W., Sol. Energ. Mat. Sol. C. 116, 102, (2013).Google Scholar
Rodriguez-Alvarez, H., Mainz, R., and Sadewasser, S., J. Appl. Phys. 115, 204913, (2014).CrossRefGoogle Scholar
Schleussner, S.M., Törndahl, T., Linnarsson, M., Zimmermann, U., Wätjen, Timo, and Edoff, M., Prog. Photovoltaics 20, 284, (2012).CrossRefGoogle Scholar
Schroeder, D.J., Berry, G.D., and Rockett, A.A., Appl. Phys. Lett. 69, 4068, (1996).CrossRefGoogle Scholar
Tinter, U., and Wiemhofer, H.D., Solid State lonics 9 & 10, 1213, (1983).Google Scholar
Szaniawski, P., Salome, P., Fjallstrom, V., Torndahl, T., Zimmermann, U., and Edoff, M., IEEE Journ. Photovoltaics, 5, 1775, (2015).Google Scholar
Park, J. S., Dong, Z., Kim, S., and Perepezko, J. H., J. Appl. Phys. 87, 3683, (2000).Google Scholar
Caballero, R., Izquierdo-Roca, V., Fontane, X., Kaufmann, C.A., Alvarez-Garcia, J., Eicke, A., Calvo-Barrio, L., Perez-Rodriguez, A., Schock, H.W., and Morante, J.R., Acta Mater. 58, 3468, (2010).Google Scholar
Chirila, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A.R., Fella, C., Kranz, L., Perrenoud, J., Seyrling, S., Verma, R., Nishiwaki, S., Romanyuk, Y.E., Bilger, G., and Tiwari, A.N., Nat. Mater. 10, 857, (2011).Google Scholar