Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:42:56.322Z Has data issue: false hasContentIssue false

Phase Transformation in Zone of Laser Treatment of Y2Ti2O7-Al2O3 Compositional Ceramics

Published online by Cambridge University Press:  27 November 2017

Pedro A. Márquez Aguilar
Affiliation:
Center of Investigation in Engineering and Applied Sciences of the Autonomous University of Morelos State (CIICAp-UAEMor), Av. Universidad, 1001, Cuernavaca, Morelos, Mexico.
Marina Vlasova*
Affiliation:
Center of Investigation in Engineering and Applied Sciences of the Autonomous University of Morelos State (CIICAp-UAEMor), Av. Universidad, 1001, Cuernavaca, Morelos, Mexico.
Mykola Kakazey
Affiliation:
Center of Investigation in Engineering and Applied Sciences of the Autonomous University of Morelos State (CIICAp-UAEMor), Av. Universidad, 1001, Cuernavaca, Morelos, Mexico.
Adalberto Castro Hernández
Affiliation:
Center of Investigation in Engineering and Applied Sciences of the Autonomous University of Morelos State (CIICAp-UAEMor), Av. Universidad, 1001, Cuernavaca, Morelos, Mexico.
Get access

Abstract

The synthesis of Y2Ti2O7-Al2O3 compositional (multiphase) ceramics from powder mixtures Al2O3-Y2O3-TiO2 was carried out in two stages: 1) under the traditional sintering and then 2) in regime of directed laser heating. It was established that the sintering of mixtures with different content of components and the ratio of TiO2/Y2O3 = 2.34 in ceramic specimens the main phases are Y2Ti2O7 and α-Al2O3. The content of the main phases in ceramic materials also depends upon the oxide content in the initial mixtures. In ceramics the Y3Al5O12 is formed only at sufficiently high content of titanium and yttrium oxides in initial mixtures. In laser remelting, the phase composition is substantially different from that obtained at the traditional sintering, and depends on the mode of laser heating: irradiation power and the moving speed of the laser beam (i.e., heating temperature). Under certain conditions of laser remelting can be obtained superficial ceramic layer with crystallographic directional crystallization of Y2Ti2O7 and Al2O3 crystallites. The size of crystallites and the coefficient texturing also depend on the mode of laser treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Toropov, N.A., Diagrams of a state of silicate systems, 2nd ed. (Nauka, Leningrad, 1969).Google Scholar
Vlasova, M., Kakazey, M., Marquez Aguilar, P.A., Stetsenko, V., Bykov, A. and Lakiza, S., J. Alloys and Compounds. S199-S204, 586(2014).CrossRefGoogle Scholar
Lou, Q., Zhou, J., Qi, Y. and Cai, H., Laser Applications of Transparent Polycrystalline Ceramic, Chapter 20, Ed. Sikalidis, Costas (Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, 2011) pp. 447478.Google Scholar
Sanghera, J., Kim, W., Villalobos, G., Shaw, B., Baker, C., Frantz, J., Sadowski, B., and Aggarwal, I., Materials. 5, 258277 (2012).CrossRefGoogle ScholarPubMed
YanyanGuo, , Wang, Dianyuan, Zhao, Xin and Wang, Fang, Mater, . Res. Bull. 73, 8489 (2016).Google Scholar
Dai, Pengpeng, Zhang, Xintong, Zhou, Meng, Li, Xinghua, Yang, Jikai, Sun, Panpan, Xu, Changshan and Yichun Liu, , J. Am. Ceram. Soc. 95, 658662 (2012).CrossRefGoogle Scholar
Ochiai, S., Hojo, M., Mitani, A., Nakagawa, N., Sakata, S., Sato, K., Takahashi, T., Ueda, T. and Waku, Y., Compos. Sci. Technol. 61, 21172128 (2001).CrossRefGoogle Scholar
Parthasarathy, T. A., Mah, T. and Matson, L. E., J. Ceram. Process. Res. 5, 380390 (2004).Google Scholar
Vlasova, M., Márquez Aguilar, P. A., Kakazey, M, Escobar Martinez, A. and Guardian Tapia, R., J. Advanc. Microscopy Research, 10, 303313 (2015).CrossRefGoogle Scholar
Vlasova, M., Márquez Aguilar, P. A., Escobar Martinez, A, Kakazey, M., Guardian Tapia, R. and Trujillo Estrada, A., Appl. Surf. Sci. 377, 416425 (2016).CrossRefGoogle Scholar
Harimkar, S.P. and Dahotre, N.B., J. Appl. Phys. 100 (2) 024901–024901-6 (2006).CrossRefGoogle Scholar
Ruppi, S., Int. J. Refract. Met. Hard Mater. 23 (4–6), 306316 (2005).CrossRefGoogle Scholar
Vlasova, M., Kakazey, M., Marquez Aguilar, P.A., Guardian Tapia, R., Stetsenko, V., Bykov, A. and Lakiza, S., Advanc. Ceram. Sci. and Engineering 2 (3), (2013).Google Scholar
Márquez Aguilar, P. A., Vlasova, M., Lakiza, S.Kakazey, M., Bykov, A. and Stetsenko, V., Advanc. in Sci.andTechn. 88, 7479 (2014).Google Scholar