Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T07:45:13.411Z Has data issue: false hasContentIssue false

Oxides and the high entropy regime: A new mix for engineering physical properties

Published online by Cambridge University Press:  08 July 2020

P. B. Meisenheimer
Affiliation:
University of Michigan, Department of Materials Science and Engineering, 2300 Hayward St, Ann Arbor, MI, USA, 48109
J. T. Heron
Affiliation:
University of Michigan, Department of Materials Science and Engineering, 2300 Hayward St, Ann Arbor, MI, USA, 48109
Get access

Abstract

Historically, the enthalpy is the criterion for oxide materials discovery and design. In this regime, highly controlled thin film epitaxy can be leveraged to manifest bulk and interfacial phases that are non-existent in bulk equilibrium phase diagrams. With the recent discovery of entropy-stabilized oxides, entropy and disorder engineering has been realized as an orthogonal approach. This has led to the nucleation and rapid growth of research on high-entropy oxides – multicomponent oxides where the configurational entropy is large but its contribution to its stabilization need not be significant or is currently unknown. From current research, it is clear that entropy enhances the chemical solubility of species and can realize new stereochemical configurations which has led to the rapid discovery of new phases and compositions. The research has expanded beyond studies to understand the role of entropy in stabilization and realization of new crystal structures to now include physical properties and the roles of local and global disorder. Here, key observations made regarding the dielectric and magnetic properties are reviewed. These materials have recently been observed to display concerted symmetry breaking, metal-insulator transitions, and magnetism, paving the way for engineering of these and potentially other functional phenomena. Excitingly, the disorder in these oxides allows for new interplay between spin, orbital, charge, and lattice degrees of freedom to design the physical behavior. We also provide a perspective on the state of the field and prospects for entropic oxide materials in applications considering their unique characteristics.

Type
Review Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y., Advanced Engineering Materials 6, 299 (2004).CrossRefGoogle Scholar
Miracle, D.B., JOM 1 (2017).Google Scholar
Tsai, M.-H. and Yeh, J.-W., Materials Research Letters 2, 107 (2014).CrossRefGoogle Scholar
Tsai, M.-H., Entropy 15, 5338 (2013).CrossRefGoogle Scholar
Otto, F., Yang, Y., Bei, H., and George, E.P., Acta Materialia 61, 2628 (2013).CrossRefGoogle Scholar
Gao, M.C., Carney, C.S., Dogan, N., Jablonksi, P.D., Hawk, J.A., and Alman, D.E., Jom 67, 2653 (2015).CrossRefGoogle Scholar
Wang, Y.P., Li, B.S., and Fu, H.Z., Advanced Engineering Materials 11, 641 (2009).CrossRefGoogle Scholar
Ji, X., International Journal of Cast Metals Research 28, 229 (2015).CrossRefGoogle Scholar
Rost, C.M., Sachet, E., Borman, T., Moballegh, A., Dickey, E.C., Hou, D., Jones, J.L., Curtarolo, S., and Maria, J.-P., Nature Communications 6, 8485 (2015).CrossRefGoogle Scholar
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O., Science 345, 1153 (2014).CrossRefGoogle Scholar
Pogrebnjak, A.D., Yakushchenko, I.V., Abadias, G., Chartier, P., Bondar, O.V., Beresnev, V.M., Takeda, Y., Sobol’, O.V., Oyoshi, K., Andreyev, A.A., and Mukushev, B.A., J. Superhard Mater. 35, 356 (2013).CrossRefGoogle Scholar
Meng, F. and Baker, I., Journal of Alloys and Compounds 645, 376 (2015).CrossRefGoogle Scholar
Pogrebnjak, A.D., Bagdasaryan, A.A., Yakushchenko, I.V., and Beresnev, V.M., Russ. Chem. Rev. 83, 1027 (2014).CrossRefGoogle Scholar
Musicó, B.L., Gilbert, D., Ward, T.Z., Page, K., George, E., Yan, J., Mandrus, D., and Keppens, V., APL Materials 8, 040912 (2020).CrossRefGoogle Scholar
Kotsonis, G.N., Rost, C.M., Harris, D.T., and Maria, J.-P., MRS Communications 8, 1371 (2018).CrossRefGoogle Scholar
Sarkar, A., Djenadic, R., Usharani, N.J., Sanghvi, K.P., Chakravadhanula, V.S.K., Gandhi, A.S., Hahn, H., and Bhattacharya, S.S., Journal of the European Ceramic Society 37, 747 (2017).CrossRefGoogle Scholar
Liu, D., Peng, X., Liu, J., Chen, L., Yang, Y., and An, L., Journal of the European Ceramic Society 40, 2504 (2020).CrossRefGoogle Scholar
Rost, C., Entropy-Stabilized Oxides: Explorations of a Novel Class of Multicomponent Materials, North Carolina State University, 2016.Google Scholar
Meisenheimer, P.B., Kratofil, T.J., and Heron, J.T., Scientific Reports 7, 13344 (2017).CrossRefGoogle Scholar
Sivakumar, S., Zwier, E., Meisenheimer, P.B., and Heron, J.T., JoVE (Journal of Visualized Experiments) e57746(2018).Google Scholar
Rost, C.M., Rak, Z., Brenner, D.W., and Maria, J.-P., Journal of the American Ceramic Society 100, 2732 (n.d.).CrossRefGoogle Scholar
Esser, B.D., Hauser, A.J., Williams, R.E.A., Allen, L.J., Woodward, P.M., Yang, F.Y., and McComb, D.W., Phys. Rev. Lett. 117, 176101 (2016).CrossRefGoogle Scholar
Patel, R.K., Ojha, S.K., Kumar, S., Saha, A., Mandal, P., Freeland, J.W., and Middey, S., Applied Physics Letters 116, 071601 (2020).CrossRefGoogle Scholar
Sharma, Y., Musico, B.L., Gao, X., Hua, C., May, A.F., Herklotz, A., Rastogi, A., Mandrus, D., Yan, J., Lee, H.N., Chisholm, M.F., Keppens, V., and Ward, T.Z., Phys. Rev. Materials 2, 060404 (2018).CrossRefGoogle Scholar
Sharma, Y., Zheng, Q., Mazza, A.R., Skoropata, E., Heitmann, T., Gai, Z., Musico, B., Miceli, P.F., Sales, B.C., Keppens, V., Brahlek, M., and Ward, T.Z., Phys. Rev. Materials 4, 014404 (2020).CrossRefGoogle Scholar
Assal, J., Hallstedt, B., and Gauckler, L.J., Zeitschrift Fuer Metallkunde 87, (1996).Google Scholar
Zabdyr, L.A. and Fabrichnaya, O.B., JPE 23, 149 (2002).CrossRefGoogle Scholar
Perrot, P. and Kumar, H., Cu-Ni-O Ternary Phase Diagram Evaluation (MSI Materials Science International Services GmbH, Stuttgart, n.d.).Google Scholar
Sarver, J.F., Katnack, F.L., and Hummel, F.A., Electrochem, J.. Soc. 106, 960 (1959).Google Scholar
Bates, C.H., White, W.B., and Roy, R., Journal of Inorganic and Nuclear Chemistry 28, 397 (1966).CrossRefGoogle Scholar
Meisenheimer, P.B., Williams, L.D., Sung, S.H., Gim, J., Shafer, P., Kotsonis, G.N., Maria, J.-P., Trassin, M., Hovden, R., Kioupakis, E., and Heron, J.T., Phys. Rev. Materials 3, 104420 (2019).CrossRefGoogle Scholar
Rák, Zs., Maria, J.-P., and Brenner, D.W., Materials Letters 217, 300 (2018).CrossRefGoogle Scholar
Martin, L.W., Chu, Y.-H., and Ramesh, R., Materials Science and Engineering: R: Reports 68, 89 (2010).CrossRefGoogle Scholar
Ramesh, R. and Spaldin, N.A., Nature Materials 6, 21 (2007).CrossRefGoogle Scholar
Bramwell, S.T. and Gingras, M.J.P., Science 294, 1495 (2001).CrossRefGoogle Scholar
Ramirez, A.P., Hayashi, A., Cava, R.J., Siddharthan, R., and Shastry, B.S., Nature 399, 333 (1999).CrossRefGoogle Scholar
Broholm, C., Cava, R.J., Kivelson, S.A., Nocera, D.G., Norman, M.R., and Senthil, T., Science 367, (2020).CrossRefGoogle Scholar
Balents, L., Nature 464, 199 (2010).CrossRefGoogle Scholar
Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min-Lee, Y.H., McLean, W.L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).CrossRefGoogle Scholar
Pickett, W.E., Rev. Mod. Phys. 61, 433 (1989).CrossRefGoogle Scholar
Grant, P.M., J. Phys.: Conf. Ser. 129, 012042 (2008).Google Scholar
Mundy, J.A., Brooks, C.M., Holtz, M.E., Moyer, J.A., Das, H., Rébola, A.F., Heron, J.T., Clarkson, J.D., Disseler, S.M., Liu, Z., Farhan, A., Held, R., Hovden, R., Padgett, E., Mao, Q., Paik, H., Misra, R., Kourkoutis, L.F., Arenholz, E., Scholl, A., Borchers, J.A., Ratcliff, W.D., Ramesh, R., Fennie, C.J., Schiffer, P., Muller, D.A., and Schlom, D.G., Nature 537, 523 (2016).CrossRefGoogle Scholar
Lufaso, M.W. and Woodward, P.M., Acta Cryst, B, Acta Cryst Sect B, Acta Crystallogr B, Acta Crystallogr Sect B, Acta Crystallogr Struct Sci, Acta Crystallogr Sect B Struct Sci, Acta Crystallogr B Struct Sci Cryst Eng Mater 60, 10 (2004).Google Scholar
Ding, J.F., Lebedev, O.I., Turner, S., Tian, Y.F., Hu, W.J., Seo, J.W., Panagopoulos, C., Prellier, W., Van Tendeloo, G., and Wu, T., Phys. Rev. B 87, 054428 (2013).CrossRefGoogle Scholar
Bibes, M., Villegas, J.E., and Barthélémy, A., Advances in Physics 60, 5 (2011).CrossRefGoogle Scholar
Biegalski, M.D., Jia, Y., Schlom, D.G., Trolier-McKinstry, S., Streiffer, S.K., Sherman, V., Uecker, R., and Reiche, P., Appl. Phys. Lett. 88, 192907 (2006).CrossRefGoogle Scholar
Jimenez-Segura, M.P., Takayama, T., Bérardan, D., Hoser, A., Reehuis, M., Takagi, H., and Dragoe, N., Appl. Phys. Lett. 114, 122401 (2019).CrossRefGoogle Scholar
Zhang, J., Yan, J., Calder, S., Zheng, Q., McGuire, M.A., Abernathy, D.L., Ren, Y., Lapidus, S.H., Page, K., Zheng, H., Freeland, J.W., Budai, J.D., and Hermann, R.P., Chem. Mater. 31, 3705 (2019).CrossRefGoogle Scholar
Krogstad, M.J., Gehring, P.M., Rosenkranz, S., Osborn, R., Ye, F., Liu, Y., Ruff, J.P.C., Chen, W., Wozniak, J.M., Luo, H., Chmaissem, O., Ye, Z.-G., and Phelan, D., Nature Materials 1 (2018).Google Scholar
Cheng, Z.-Y., Katiyar, R.S., Yao, X., and Bhalla, A.S., Phys. Rev. B 57, 8166 (1998).CrossRefGoogle Scholar
Cross, L.E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
Damjanovic, D., Rep. Prog. Phys. 61, 1267 (1998).CrossRefGoogle Scholar
Grinberg, I., Cooper, V.R., and Rappe, A.M., Nature 419, 909 (2002).CrossRefGoogle Scholar
Grinberg, I., Cooper, V.R., and Rappe, A.M., Phys. Rev. B 69, 144118 (2004).CrossRefGoogle Scholar
Eremenko, M., Krayzman, V., Bosak, A., Playford, H.Y., Chapman, K.W., Woicik, J.C., Ravel, B., and Levin, I., Nat Commun 10, 1 (2019).CrossRefGoogle Scholar
Manley, M.E., Abernathy, D.L., Sahul, R., Parshall, D.E., Lynn, J.W., Christianson, A.D., Stonaha, P.J., Specht, E.D., and Budai, J.D., Science Advances 2, e1501814(2016).CrossRefGoogle Scholar
Li, F., Zhang, S., Yang, T., Xu, Z., Zhang, N., Liu, G., Wang, J., Wang, J., Cheng, Z., Ye, Z.-G., Luo, J., Shrout, T.R., and Chen, L.-Q., Nat Commun 7, 1 (2016).Google Scholar
Berardan, D., Meena, A.K., Franger, S., Herrero, C., and Dragoe, N., Journal of Alloys and Compounds 704, 693 (2017).CrossRefGoogle Scholar
Dixit, A., Majumder, S.B., Katiyar, R.S., and Bhalla, A.S., J Mater Sci 41, 87 (2006).CrossRefGoogle Scholar
Seo, Y.-S., Ahn, J.S., and Jeong, I.-K., Journal of the Korean Physical Society 62, 749 (2013).CrossRefGoogle Scholar
Gild, J., Zhang, Y., Harrington, T., Jiang, S., Hu, T., Quinn, M.C., Mellor, W.M., Zhou, N., Vecchio, K., and Luo, J., Scientific Reports 6, 37946 (2016).CrossRefGoogle Scholar
Braun, J.L., Rost, C.M., Lim, M., Giri, A., Olson, D.H., Kotsonis, G.N., Stan, G., Brenner, D.W., Maria, J.-P., and Hopkins, P.E., Advanced Materials 30, 1805004 (2018).CrossRefGoogle Scholar
Rak, Zs., Rost, C.M., Lim, M., Sarker, P., Toher, C., Curtarolo, S., Maria, J.-P., and Brenner, D.W., Journal of Applied Physics 120, 095105 (2016).CrossRefGoogle Scholar
Li, F., Zhou, L., Liu, J.-X., Liang, Y., and Zhang, G.-J., J Adv Ceram 8, 576 (2019).CrossRefGoogle Scholar
Gild, J., Samiee, M., Braun, J.L., Harrington, T., Vega, H., Hopkins, P.E., Vecchio, K., and Luo, J., Journal of the European Ceramic Society 38, 3578 (2018).CrossRefGoogle Scholar
Yan, X., Constantin, L., Lu, Y., Silvain, J.-F., Nastasi, M., and Cui, B., Journal of the American Ceramic Society 101, 4486 (2018).Google Scholar
Brahlek, M., Mazza, A.R., Pitike, K.C., Skoropata, E., Lapano, J., Eres, G., Cooper, V.R., and Ward, T.Z., ArXiv:2004.02985 [Cond-Mat] (2020).Google Scholar
Berardan, D., Franger, S., Dragoe, D., Meena, A.K., and Dragoe, N., Physica Status Solidi - Rapid Research Letters 10, 328 (2016).CrossRefGoogle Scholar
Berardan, D., Franger, S., Meena, A.K., and Dragoe, N., Mater, J.. Chem. A 9536 (2016).Google Scholar
Sarkar, A., Velasco, L., Wang, D., Wang, Q., Talasila, G., de Biasi, L., Kübel, C., Brezesinski, T., Bhattacharya, S.S., Hahn, H., and Breitung, B., Nat Commun 9, 1 (2018).Google Scholar
Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., and Cui, Y., Journal of Alloys and Compounds 777, 767 (2019).CrossRefGoogle Scholar
Wang, Q., Sarkar, A., Li, Z., Lu, Y., Velasco, L., Bhattacharya, S.S., Brezesinski, T., Hahn, H., and Breitung, B., Electrochemistry Communications 100, 121 (2019).CrossRefGoogle Scholar
Zheng, Y., Yi, Y., Fan, M., Liu, H., Li, X., Zhang, R., Li, M., and Qiao, Z.-A., Energy Storage Materials 23, 678 (2019).CrossRefGoogle Scholar
Chen, H., Fu, J., Zhang, P., Peng, H., Abney, C.W., Jie, K., Liu, X., Chi, M., and Dai, S., J. Mater. Chem. A 6, 11129 (2018).CrossRefGoogle Scholar
Chen, H., Lin, W., Zhang, Z., Jie, K., Mullins, D.R., Sang, X., Yang, S.-Z., Jafta, C.J., Bridges, C.A., Hu, X., Unocic, R.R., Fu, J., Zhang, P., and Dai, S., ACS Materials Lett. 1, 83 (2019).CrossRefGoogle Scholar
Du, Q., Yan, J., Zhang, X., Li, J., Liu, X., Zhang, J., and Qi, X., J Mater Sci: Mater Electron (2020).Google Scholar
Grzesik, Z., Smoła, G., Stygar, M., Dąbrowa, J., Zajusz, M., Mroczka, K., and Danielewski, M., Journal of the European Ceramic Society 39, 4292 (2019).CrossRefGoogle Scholar
Bhaskar, L.K., Nallathambi, V., and Kumar, R., Journal of the American Ceramic Society 103, 3416 (2020).CrossRefGoogle Scholar
Lin, M.-I., Tsai, M.-H., Shen, W.-J., and Yeh, J.-W., Thin Solid Films 518, 2732 (2010).CrossRefGoogle Scholar
Tsau, C.-H., Yang, Y.-C., Lee, C.-C., Wu, L.-Y., and Huang, H.-J., Procedia Engineering 36, 246 (2012).CrossRefGoogle Scholar
Tsau, C.-H., Hwang, Z.-Y., and Chen, S.-K., Advances in Materials Science and Engineering 2015, (2015).CrossRefGoogle Scholar
Sarkar, A., Eggert, B., Velasco, L., Mu, X., Lill, J., Ollefs, K., Bhattacharya, S.S., Wende, H., Kruk, R., Brand, R.A., and Hahn, H., ArXiv:2003.00268 [Cond-Mat] (2020).Google Scholar
Goodenough, J.B., Phys. Rev. 100, 564 (1955).CrossRefGoogle Scholar
Kanamori, J., Journal of Physics and Chemistry of Solids 10, 87 (1959).CrossRefGoogle Scholar
Anderson, P.W., Phys. Rev. 79, 350 (1950).CrossRefGoogle Scholar
Iwata-Harms, J.M., Wong, F.J., Alaan, U.S., Kirby, B.J., Borchers, J.A., Toney, M.F., Nelson-Cheeseman, B.B., Liberati, M., Arenholz, E., and Suzuki, Y., Phys. Rev. B 85, 214424 (2012).CrossRefGoogle Scholar
Sherrington, D., in North-Holland Mathematical Library, edited by Taylor, J.G. (Elsevier, 1993), pp. 261291.CrossRefGoogle Scholar
Parisi, G., Proceedings of the National Academy of Sciences 103, 7948 (2006).CrossRefGoogle Scholar
Wang, R.F., Nisoli, C., Freitas, R.S., Li, J., McConville, W., Cooley, B.J., Lund, M.S., Samarth, N., Leighton, C., Crespi, V.H., and Schiffer, P., Nature 439, 303 (2006).CrossRefGoogle Scholar
Witte, R., Sarkar, A., Kruk, R., Eggert, B., Brand, R.A., Wende, H., and Hahn, H., Phys. Rev. Materials 3, 034406 (2019).CrossRefGoogle Scholar
Frandsen, B.A., Petersen, K.A., Ducharme, N.A., Shaw, A.G., Gibson, E.J., Winn, B., Yan, J., Zhang, J., Manley, M.E., and Hermann, R.P., ArXiv:2004.04218 [Cond-Mat] (2020).Google Scholar
Radu, F. and Zabel, H., Springer Tracts in Modern Physics 227, 97 (2007).CrossRefGoogle Scholar
Heron, J.T., Trassin, M., Ashraf, K., Gajek, M., He, Q., Yang, S.Y., Nikonov, D.E., Chu, Y.H., Salahuddin, S., and Ramesh, R., Physical Review Letters 107, 1 (2011).CrossRefGoogle Scholar
Mao, A., Xiang, H.-Z., Zhang, Z.-G., Kuramoto, K., Zhang, H., and Jia, Y., Journal of Magnetism and Magnetic Materials 497, 165884 (2020).CrossRefGoogle Scholar
Mao, A., Xie, H.-X., Xiang, H.-Z., Zhang, Z.-G., Zhang, H., and Ran, S., Journal of Magnetism and Magnetic Materials 503, 166594 (2020).CrossRefGoogle Scholar
Musicó, B., Wright, Q., Ward, T.Z., Grutter, A., Arenholz, E., Gilbert, D., Mandrus, D., and Keppens, V., Phys. Rev. Materials 3, 104416 (2019).CrossRefGoogle Scholar
Amit, D.J., Gutfreund, H., and Sompolinsky, H., Phys. Rev. A 32, 1007 (1985).CrossRefGoogle Scholar
Baldi, P. and Venkatesh, S.S., Phys. Rev. Lett. 58, 913 (1987).CrossRefGoogle Scholar
Hamilton, K.E., Schuman, C.D., Young, S.R., Imam, N., and Humble, T.S., in 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) (2018), pp. 11941203.CrossRefGoogle Scholar
Bert, F., Dupuis, V., Vincent, E., Hammann, J., and Bouchaud, J.-P., Phys. Rev. Lett. 92, 167203 (2004).CrossRefGoogle Scholar
Parisi, G., Physica A: Statistical Mechanics and Its Applications 194, 28 (1993).CrossRefGoogle Scholar
Parisi, G. and Slanina, F., EPL 17, 497 (1992).CrossRefGoogle Scholar
Mézard, M. and Parisi, G., J. Phys.: Condens. Matter 11, A157 (1999).Google Scholar
Sidebottom, D.L., Front. Mater. 6, (2019).CrossRefGoogle Scholar
Yildirim, C., Raty, J.-Y., and Micoulaut, M., Nat Commun 7, (2016).CrossRefGoogle Scholar
Gruyters, M., Phys. Rev. Lett. 95, 077204 (2005).CrossRefGoogle Scholar
Cai, J.-W., Wang, C., Shen, B.-G., Zhao, J.-G., and Zhan, W.-S., Appl. Phys. Lett. 71, 1727 (1997).CrossRefGoogle Scholar
Ali, M., Adie, P., Marrows, C.H., Greig, D., Hickey, B.J., and Stamps, R.L., Nat Mater 6, 70 (2007).CrossRefGoogle Scholar
Rák, Zs. and Brenner, D.W., Journal of Applied Physics 127, 185108 (2020).CrossRefGoogle Scholar
Menshikov, A.Z., Dorofeev, Y.A., Klimenko, A.G., and Mironova, N.A., Physica Status Solidi (b) 164, 275 (1991).CrossRefGoogle Scholar
Seehra, M.S., Dean, J.C., and Kannan, R., Phys. Rev. B 37, 5864 (1988).CrossRefGoogle Scholar
Praveen, S. and Kim, H.S., Advanced Engineering Materials 20, 1700645 (n.d.).CrossRefGoogle Scholar
Huang, H., Wu, Y., He, J., Wang, H., Liu, X., An, K., Wu, W., and Lu, Z., Advanced Materials 29, 1701678 (2017).CrossRefGoogle Scholar
Acet, M., AIP Advances 9, 095037 (2019).CrossRefGoogle Scholar
Li, P., Wang, A., and Liu, C.T., Journal of Alloys and Compounds 694, 55 (2017).CrossRefGoogle Scholar
Schneeweiss, O., Friák, M., Dudová, M., Holec, D., Šob, M., Kriegner, D., Holý, V., Beran, P., George, E.P., Neugebauer, J., and Dlouhý, A., Phys. Rev. B 96, 014437 (2017).CrossRefGoogle Scholar
Chang, X., Zeng, M., Liu, K., and Fu, L., Advanced Materials n/a, 1907226 (n.d.).Google Scholar
Niu, C., LaRosa, C.R., Miao, J., Mills, M.J., and Ghazisaeidi, M., Nature Communications 9, 1 (2018).CrossRefGoogle Scholar
Dąbrowa, J. and Danielewski, M., Metals 10, 347 (2020).CrossRefGoogle Scholar
Maier-Kiener, V., Schuh, B., George, E.P., Clemens, H., and Hohenwarter, A., Journal of Materials Research 32, 2658 (2017).CrossRefGoogle Scholar
Sarkar, S., Ren, X., and Otsuka, K., Phys. Rev. Lett. 95, 205702 (2005).CrossRefGoogle Scholar
Wang, Y., Ren, X., Otsuka, K., and Saxena, A., Phys. Rev. B 76, 132201 (2007).CrossRefGoogle Scholar
Iida, S. and Terauchi, H., J. Phys. Soc. Jpn. 52, 4044 (1983).CrossRefGoogle Scholar
Vugmeister, B.E. and Glinchuk, M.D., Rev. Mod. Phys. 62, 993 (1990).CrossRefGoogle Scholar
Choudhury, D., Mandal, P., Mathieu, R., Hazarika, A., Rajan, S., Sundaresan, A., Waghmare, U.V., Knut, R., Karis, O., Nordblad, P., and Sarma, D.D., Phys. Rev. Lett. 108, 127201 (2012).CrossRefGoogle Scholar
Kleemann, W., Bedanta, S., Borisov, P., Shvartsman, V.V., Miga, S., Dec, J., Tkach, A., and Vilarinho, P.M., Eur. Phys. J. B 71, 407 (2009).CrossRefGoogle Scholar
Kleemann, W., Shvartsman, V.V., Bedanta, S., Borisov, P., Tkach, A., and Vilarinho, P.M., J. Phys.: Condens. Matter 20, 434216 (2008).Google Scholar
Shvartsman, V.V., Bedanta, S., Borisov, P., Kleemann, W., Tkach, A., and Vilarinho, P.M., Phys. Rev. Lett. 101, 165704 (2008).CrossRefGoogle Scholar
Kaufmann, K., Maryanovsky, D., Mellor, W.M., Zhu, C., Rosengarten, A.S., Harrington, T.J., Oses, C., Toher, C., Curtarolo, S., and Vecchio, K.S., Npj Computational Materials 6, 1 (2020).CrossRefGoogle Scholar
Sarker, P., Harrington, T., Toher, C., Oses, C., Samiee, M., Maria, J.-P., Brenner, D.W., Vecchio, K.S., and Curtarolo, S., Nat Commun 9, 1 (2018).CrossRefGoogle Scholar