Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:22:09.719Z Has data issue: false hasContentIssue false

Nano-Oxide-Dispersed Ferritic Steel for Fusion Energy Systems

Published online by Cambridge University Press:  19 February 2018

L. L. Hsiung*
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
S. J. Tumey
Affiliation:
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA94550
D. T. Hoelzer
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN37831
M. J. Fluss
Affiliation:
Nuclear Engineering Department, University of California Berkeley, Berkeley, CA94720
*
Get access

Abstract

The role of oxide nanoparticles in cavity formation of a nano-oxide-dispersed ferritic steel subjected to (Fe + He) dual-ion and (Fe + He + H) triple-ion irradiations has been studied using transmission electron microscopy to elucidate the synergistic effects of helium and hydrogen on radiation tolerance of nano-oxide-dispersed ferritic steel for fusion energy systems. The effect of oxide nanoparticles on suppressing radiation-induced void swelling is clearly revealed from the observation of preferred trapping of helium bubbles at oxide nanoparticles, which results in a unimodal distribution of cavities in the (Fe + He) dual-ion irradiated specimen. An adverse effect of hydrogen implantation, however, is revealed from the observation of a bimodal distribution of cavities with large and facetted voids in association with the formation of HFe5O8-based hydroxide in local regions of the (Fe + He + H) triple-ion irradiated specimen.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ehrlich, K., Phil. Trans. R. Soc. Lond. A357, 595 (1999).Google Scholar
Bloom, E.E., J. Nucl. Mater. 85-86, 795 (1979).CrossRefGoogle Scholar
Ukai, S. and Fujiwara, M., J. Nucl. Mater. 307-311, 749 (2002).CrossRefGoogle Scholar
Packan, N.H., Farrell, K., and Stiegler, J.O., J. Nucl. Mater. 78, 143 (1978).Google Scholar
Kim, I.–S, Hunn, J.D., Hashimoto, N., Larson, D.L., Maziasz, P.J., Miyahara, K., and Lee, E.H., J. Nucl. Mater. 280, 264 (2000).Google Scholar
Tanaka, T., Oka, K., Ohnuki, S., Yamashita, S., Suda, T., Watanabe, S., and Wakai, E., J. Nucl. Mater. 329-333, 294 (2004).Google Scholar
Yutani, K., Kishimoto, H., Kasada, R., and Kimura, A., J. Nucl. Mater. 367-370, 423 (2007).CrossRefGoogle Scholar
Uki, S., Nishida, T., Okada, H., Okuda, T., Fujiwara, M., and Asabe, K., J. Nucl. Sci. Technol. 34(3), 256 (1997).CrossRefGoogle Scholar
Boudias, C. and Monceau, D., The crystallographic software for research and teaching, Senlis, France (1989-1998).Google Scholar
Stadelmann, P., Simulation of diffraction patterns and high-resolution images using jems, CIME-EPFL, Lausanne, Switzerland (1999-2011).Google Scholar
Digital Micrograph, version 1.82.366, Gatan Inc., CA, USA (1996-2008).Google Scholar
Mansur, L.K. and Coghlan, W.A., J. Nucl. Mater. 119, 1 (1983).CrossRefGoogle Scholar
Mansur, L.K., Lee, E.H., Maziasz, P.J., and Rowcliffe, A.P., J. of Nucl. Mater. 141-143, 633 (1986).Google Scholar
Horton, L.L. and Mansur, L.K., ASTM STP, 870, 344 (1985).Google Scholar
Hsiung, L., Fluss, M., Tumey, S., Choi, B., Surruys, Y., Williams, F., and Kimura, A., Physical Review B 82, 184130 (2010).CrossRefGoogle Scholar
Yamamoto, T., Odette, G.R., Miao, P., Edwards, D.J., and Kurtz, R.J., J. of Nucl. Mater. 386-388, 338 (2009).Google Scholar
Ruhle, M. and Wilkens, M, Cryst. Lattice Defects 6, 129 (1975).Google Scholar
Pinney, N., Kubicki, J.D., Middlemiss, D.S., Grey, C.P., and Morgan, D., Chemistry of Materials 21, 5727 (2009).Google Scholar