Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T02:31:31.302Z Has data issue: false hasContentIssue false

A Multiscale Approach to Predict the Mechanical Properties of Copper Nanofoams

Published online by Cambridge University Press:  24 January 2019

Hang Ke*
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY13699, US
Andres Garcia Jimenez
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY13699, US
Ioannis Mastorakos
Affiliation:
Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY13699, US
*
Get access

Abstract

Pure metallic nanofoams in the form of interconnected networks have shown strong potentials over the past few years in areas such as catalysts, batteries and plasmonics. However, they are often fragile and difficult to integrate in engineering applications. In order to better understand their deformation mechanisms, a multiscale approach is required to simulate the mechanical behavior of the nanofoams, although these materials will operate at the macroscale, they will still be maintaining an atomistic ordering. Hence, in this work we combine molecular dynamics (MD) and finite element analysis (FEA) to study the mechanical behavior of copper (Cu) nanofoams. Molecular dynamics simulations were performed to study the yield surface of a representative cell structure. The nanofoam structure has been generated by spinodal decomposition of binary alloy using an atomistic approach. Then, the information obtained from the molecular dynamics simulations in the form of yield function is transferred to the finite element model to study the macroscopic behavior of the Cu nanofoams. The simulated mechanical behavior of Cu nanofoams is in good agreement of the real experiment results.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wittstock, A., Zielasek, V., Biener, J., Friend, C. M., and Bäumer, M., Science 327, 319 (2010).CrossRefGoogle Scholar
Chen, L. Y., Fujita, T., and Chen, M. W., Electrochimica Acta 67, 1 (2012).CrossRefGoogle Scholar
Biener, J., Wittstock, A., Zepeda-Ruiz, L. A., Biener, M. M., Zielasek, V., Kramer, D., Viswanath, R. N., Weissmüller, J., Bäumer, M., and Hamza, A. V., Nat. Mater. 8, 47 (2009).CrossRefGoogle Scholar
Antolini, E., Energy Environ. Sci. 2, 915 (2009).CrossRefGoogle Scholar
Biener, J., Nyce, G. W., Hodge, A. M., Biener, M. M., Hamza, A. V., and Maier, S. A., Adv. Mater. 20, 1211 (2008).CrossRefGoogle Scholar
Gibson, L. J. and Ashby, M. F., Cellular Solids: Structure and Properties (Cambridge University Press, 1997). p. 186.CrossRefGoogle Scholar
Hodge, A. M., Biener, J., Hayes, J. R., Bythrow, P. M., Volkert, C. A., and Hamza, A. V., Acta Mater. 55, 1343 (2007).CrossRefGoogle Scholar
Briot, N. J. and Balk, T. J., Philos. Mag. 95, 2955 (2015).CrossRefGoogle Scholar
Gunkelmann, N., Rosandi, Y., Ruestes, C. J., Bringa, E. M., and Urbassek, H. M., Comput. Mater. Sci. 119, 27 (2016).CrossRefGoogle Scholar
Gunkelmann, N., Bringa, E. M., and Rosandi, Y., J. Phys. Chem. C 122, 26243 (2018).CrossRefGoogle Scholar
Ngô, B. -N. D., Stukowski, A., Mameka, N., Markmann, J., Albe, K., and Weissmüller, J., Acta Mater. 93, 144 (2015).CrossRefGoogle Scholar
He, L. and Abdolrahim, N., Comput. Mater. Sci. 150, 397 (2018).CrossRefGoogle Scholar
Crowson, D. A., Farkas, D., and Corcoran, S. G., Scr. Mater. 61, 497 (2009).CrossRefGoogle Scholar
Crowson, D. A., Farkas, D., and Corcoran, S. G., Scr. Mater. 56, 919 (2007).CrossRefGoogle Scholar
Stukowski, A., Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
Plimpton, S., J. Comput. Phys. 117, 1 (1995).CrossRefGoogle Scholar
Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
Daw, M. S., Foiles, S. M., and Baskes, M. I., Mater. Sci. Rep. 9, 251 (1993).CrossRefGoogle Scholar
Voter, A. F. and Chen, S. P., MRS Online Proc. Libr. Arch. 82, (1986).Google Scholar
Deshpande, V. S. and Fleck, N. A., J. Mech. Phys. Solids 48, 1253 (2000).CrossRefGoogle Scholar
Hanssen, A. G., Hopperstad, O. S., Langseth, M., and Ilstad, H., Int. J. Mech. Sci. 44, 359 (2002).CrossRefGoogle Scholar
Gubicza, J., Jenei, P., Nam, K., Kádár, C., Jo, H., and Choe, H., Mater. Sci. Eng. A 725, 160 (2018).CrossRefGoogle Scholar
Gaston, D. R., Permann, C. J., Peterson, J. W., Slaughter, A. E., Andrš, D., Wang, Y., Short, M. P., Perez, D. M., Tonks, M. R., Ortensi, J., Zou, L., and Martineau, R. C., Ann. Nucl. Energy 84, 45 (2015).CrossRefGoogle Scholar