Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T17:39:03.110Z Has data issue: false hasContentIssue false

Magnetism and magnetic anisotropy in UGa2

Published online by Cambridge University Press:  20 July 2020

Banhi Chatterjee
Affiliation:
Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha, Czech Republic
Jindřich Kolorenč
Affiliation:
Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Praha, Czech Republic
Get access

Abstract

We investigate whether first-principles calculations with an improved description of electronic correlations can explain the large magnetic moments and the strong magnetocrystalline anisotropy in the ferromagnetic compound UGa2. The correlations are treated within a static mean-field approximation DFT+U combining the density functional theory (DFT) with an onsite Hubbard interaction U. We find that DFT+U improves the agreement of the magnetic moments with the experiment compared to DFT but worsens the theoretical description of the magnetocrystalline anisotropy.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hill, H. H. in Plutonium 1970 and Other Actinides, edited by Miner, W. N. (The Metallurgical Society of the AIME, 1970).Google Scholar
Andreev, A. V., Belov, K. P., Deriagin, A. V., Kazei, Z. A., Levitin, R. Z., Meňovský, A., Popov, Y. F., and Silant'ev, V. I., Sov. Phys. JETP 48, 1187 (1978).Google Scholar
Lawson, A. C., Williams, A., Smith, J. L., Seeger, P. A., Goldstone, J. A., O'Rourke, J. A., Fisk, Z., J. Magn. Matter. 50, 83 (1985).10.1016/0304-8853(85)90091-5CrossRefGoogle Scholar
Gouder, T., Havela, L., Diviš, M., Rebizant, J., Oppeneer, P. M. and Richter, M., J. Alloys Compd. 314, 7 (2001).Google Scholar
Fujimori, S., Kobata, M., Takeda, Y., Okane, T., Saitoh, Y., Fujimori, A., Yamagami, H., Haga, Y., Yamamoto, E., and Onuki, Y., Phys. Rev. B 99, 035109 (2019).10.1103/PhysRevB.99.035109CrossRefGoogle Scholar
Diviš, M., Richter, M., Eschrig, H. and Steinbeck, L., Phys. Rev. B 65, 049901 (2001).10.1103/PhysRevB.65.049901CrossRefGoogle Scholar
Shick, A. B., Liechtenstein, A. I. and Pickett, W. E., Phys. Rev. B 60, 10763 (1999).10.1103/PhysRevB.60.10763CrossRefGoogle Scholar
Ylvisaker, E. R., Pickett, W. E. and Koepernik, K., Phys. Rev. B 79, 035103 (2009).10.1103/PhysRevB.79.035103CrossRefGoogle Scholar
Antropov, V. P., Antonov, V. N., Bekenov, L. V., Kutepov, A. and Kotliar, G., Phys. Rev. B 90, 054404 (2014).10.1103/PhysRevB.90.054404CrossRefGoogle Scholar
Larson, P., Mazin, I. I. and Papaconstantopoulos, D. A., Phys. Rev. B 67, 214405 (2003).10.1103/PhysRevB.67.214405CrossRefGoogle Scholar
Zhang, J. T., Wang, J. L., Ji, C., Guo, B. X., Xia, W. S., Lu, X. M. and Zhu, J. S., Phys. Rev. B 96, 165132 (2017).10.1103/PhysRevB.96.165132CrossRefGoogle Scholar
Nordstrom, L., Brooks, M. S. S. and Johansson, B., J. Phys. Cond. Matt. 4, 3261 (1992).10.1088/0953-8984/4/12/016CrossRefGoogle Scholar
Wang, X., Wang, D., Wu, R., and Freeman, A. J., JMMM 159, 337341 (1996).10.1016/0304-8853(95)00936-1CrossRefGoogle Scholar
Blaha, P., Schwarz, K., Tran, F., Laskowski, R., Madsen, G. K. H. and Marks, L. D., J. Chem. Phys. 152, 074101 (2020).10.1063/1.5143061CrossRefGoogle Scholar
Diviš, M., Richter, M., Eschrig, H. and Steinbeck, L., Phys. Rev. B 53, 9658 (1996).10.1103/PhysRevB.53.9658CrossRefGoogle Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., and Sutton, A. P., Phys. Rev. B 57, 1505 (1998).10.1103/PhysRevB.57.1505CrossRefGoogle Scholar
Nguyen, M. C., Yao, Y., Wang, C., Ho, K., and Antropov, V. P., arXiv:1706.07368 (2017).Google Scholar
Zhu, J. X., Janoschek, M., Rosenberg, R., Ronning, F., Thompson, J. D., Torrez, M. A., Bauer, E. D., and Batista, C. D., Phys. Rev. X 4, 021027 (2014).Google Scholar