Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T19:48:00.625Z Has data issue: false hasContentIssue false

Kinetics of silver nanoparticle release from chitosan spheres

Published online by Cambridge University Press:  16 January 2017

Luci Cristina de Oliveira Vercik*
Affiliation:
University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-000, Pirassununga - SP, Brazil.
Andres Vercik
Affiliation:
University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-000, Pirassununga - SP, Brazil.
Eliana Cristina da Silva Rigo
Affiliation:
University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-000, Pirassununga - SP, Brazil.
*
Get access

Abstract

The kinetics of silver nanoparticles release from chitosan spheres is addressed experimentally and theoretically in this work. From the experimental viewpoint, the study of silver nanoparticles release is performed by measuring the time-dependent UV-Vis spectra of solutions where spheres were dispersed. The UV-VIS spectra intensity reflects the concentration of nanoparticles in the solution. Despite simple expressions for drug release are found in the literature, as those that relate the amount of drug release with the square root of time, a proper modeling might require the inclusion of several phenomena such as the presence of stagnant layers, swelling or erosion of the matrix, accumulation of particles in the medium, amongst others. The experiments show that chitosan/silver nanoparticles complexes are actually released, indicating that both swelling and erosion of the matrix takes place during the release process. The simplest model for drug release, i.e., the Higuchi’s model, fits the observed results surprisingly well, which is a relevant result due to the lack of mathematical modeling for the release of nanoparticles.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Safari, J. and Zarnegar, Z., J. Saudi Chem. Soc. 18(2), 85 (2014).CrossRefGoogle Scholar
Suri, S. S., Fenniri, H., and Singh, B., J Occup Med Toxicol. 2, 16 (2007).CrossRefGoogle Scholar
Jain, S., Jain, V., and Mahajan, S. C., “Lipid Based Vesicular Drug Delivery Systems”, Adv. Pharm. vol. 2014(7), 1 (2014).Google Scholar
Reidy, B., Haase, A., Luch, A., Dawson, K. A., and Lynch, I., Materials (Basel) 6(6), 22952350 (2013).Google Scholar
Elsaesser, A. and Howard, C. V., Adv. Drug Deliv. Rev. 64(2), 129–37 (2012).Google Scholar
Bernkop-Schnürch, A. and Dünnhaupt, S., Eur. J. Pharm. Biopharm. 81(3), 463 (2012).CrossRefGoogle Scholar
Garcia-Fuentes, M. and Alonso, M. J., J. Control. Release 161(2), 496 (2012).Google Scholar
Wilson, B., Samanta, M. K., Santhi, K., Kumar, K. P. S., Ramasamy, M., and Suresh, B., Nanomedicine Nanotechnology, Biol. Med. 6(1),144 (2010).Google Scholar
Chen, M. C., Mi, F. L., Liao, Z. X., Hsiao, C. W., Sonaje, K., Chung, M. F., Hsu, L. W., and Sung, H. W., Adv. Drug Deliv. Rev. 65(6), 865 (2013).Google Scholar
Huang, K.-S., Wang, L.-S., Wang, C.-Y., Yang, C.-H., Hsieh, C.-L., Chen, S.-Y., Shen, C.-Y., and Wang, J.-J., Int. J. Nanomedicine 244(2), 2685 (2015).CrossRefGoogle Scholar
Bin Ahmad, M., Lim, J. J., Shameli, K., Ibrahim, N. A., and Tay, M. Y., Molecules 16(9), 7237 (2011).Google Scholar
Kang, Y., Jung, J.-Y., Cho, D., Kwon, O., Cheon, J., and Park, W., Materials (Basel) 9(4), 215, 2016.CrossRefGoogle Scholar
Mondal, I. H., Islam, A. B. M. N., and Alam, J., Nanosc. and Nanotech. 5(3), 64 (2015).Google Scholar
Kaunisto, E., Marucci, M., Borgquist, P., and Axelsson, A., Int. J. Pharm. 418(1), 54 (2011).Google Scholar
Higuchi, T., J. Pharm. Sci. 50, 874 (1961).Google Scholar
Lee, P. I., Int. J. Pharm. 418(1), 18 (2011).Google Scholar
Higuchi, T., J. Pharm. Sci. 52, 1145 (1963).CrossRefGoogle Scholar
Busila, M., Musat, V., Textor, T., and Mahltig, B., RSC Advances pp. 21562 (2015).Google Scholar
Modrzejewska, Z., Dorabialska, M., Zarzycki, R. and Wojtasz-Pająk, A., Prog. Chem. Applic. Chit. 14, 49 (2009).Google Scholar