Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T01:04:25.996Z Has data issue: false hasContentIssue false

The Formation of Pitted Features on the International Simple Glass during Dynamic Experiments at Alkaline pH

Published online by Cambridge University Press:  11 January 2019

Adam J. Fisher*
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK.
Neil C. Hyatt
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK.
Russell J. Hand
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK.
Claire L. Corkhill
Affiliation:
NucleUS Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, UK.
Get access

Abstract

The forward rate of dissolution of the International Simple Glass (ISG) was determined under alkaline conditions at 40 °C using the Single Pass Flow Through (SPFT) method. Forward rates were consistent with those obtained in the literature for this glass composition. The formation of altered gel layers and surface pits was observed on the surface of glass particles, especially at the very highest pH values, despite the application of high flow rates to prevent the build-up of solubility limiting phases. These features could be attributed to preferential localized dissolution at sites with a higher alkali concentration or from a separate, less durable, vitreous phase. These results may indicate that surface pit and altered gel formation occurs under the forward rate of dissolution as imposed by the SPFT method, particularly for simplified borosilicate glass materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gin, S., Abdelouas, A., Criscenti, L. J., Ebert, W. L., Ferrand, K., Geisler, T., Harrison, M. T., Inagaki, Y., Mitsui, S., Mueller, K. T., Marra, J. C., Pantano, C. G., Pierce, E. M., Ryan, J. V., Schofield, J. M., Steefel, C. I. and Vienna, J. D., Mater. Today. 16, 243-248 (2013).CrossRefGoogle Scholar
ASTM Standard – ‘Standard practice for measurement of the glass dissolution rate using the single-pass flow-through test method (SPFT)’; C1662-10, (2010).Google Scholar
Gin, S., Jollivet, P., Fournier, M., Berthon, C., Wang, Z., Mitroshkov, A., Zhu, Z. and Ryan, J.V., Geo. Cos. Act. 151, 68-85 (2015).CrossRefGoogle Scholar
Kasper, T. C., Mann, C., Kirkham, M., Vienna, J. D., Gin, S., Frugier, P., Harrison, M. T., Neeway, J. J., Ryan, J. V. Invited review: Physical and optical properties of the International Simple Glass Nat. Mat. Deg. (2018) (in preparation).Google Scholar
SRNL. Letter report on compositional measurements of common simple glass. Savannah River National Laboratory, SRNL-L3100-2012-00092 (2012).Google Scholar
Backhouse, D. J., Fisher, A. J., Corkhill, C. L., Hyatt, N. C. and Hand, R. J., Nat. Mat. Deg. 2, 29 (2018).Google Scholar
Neeway, J. J., Rieke, P. C., Parruzot, B. P., Ryan, J. V. & Asmussen, R. M., Geo. Cos. Act. 226, 132-148 (2018).CrossRefGoogle Scholar
McGrail, B. P., Ebert, W. L., Bakel, A. J. and Peeler, D. K., J. Nuc. Mat. 149, 175-189 (1997).CrossRefGoogle Scholar
Fournier, M., Ull, A., Nicoleau, E., Inagaki, Y., Odorico, M., Frugier, P. and Gin, S., J. Nucl. Mater. 476, 140-154 (2016).CrossRefGoogle Scholar
Pierce, E., Reed, L. R., Shaw, W. J., McGrail, B. P., Icenhower, J., Windisch, C. F., Cordova, E. A. and Broady, J., Geo. Cos. Act. 74, 2634-2654 (2010).CrossRefGoogle Scholar
Icenhower, J. P.. Private communication regarding the Nature Materials Degradation publicationBackhouse, D. J., Fisher, A. J., Corkhill, C. L., Hyatt, N. C. and Hand, R. J., Nat. Mat. Deg. 2, 29 (2018).Google Scholar
Geisler, T., Janssen, A., Scheiter, D., Stephan, T., Berndt, J. and Putnis, A., J. Non- Cryst. Solids 356, 1458-1465 (2010).CrossRefGoogle Scholar
Hellman, R., Wirth, R., Daval, D., Barnes, J., Penisson, J., Tisserand, D., Epicier, T., Florin, B. and Hervig, R. L., Chem. Geol. 294-295, 203-216 (2012).CrossRefGoogle Scholar
Putnis, A. and Putnis, C.V., J. Solid. State. Chem. 180, 1783 (2007).CrossRefGoogle Scholar
Icenhower, J. P., McGrail, B. P., Shaw, W. J., Pierce, E. M., Nachimuthu, P., Shuh, D. K., Rodriguez, E. A. and Steele, J. L., Geo. Cos. Act. 72, 2767-2788 (2008).CrossRefGoogle Scholar
Chinnam, R. K., Fossati, P. C. M. and Lee, W. E.. J. Nuc. Mat. 503, 56-65 (2018).CrossRefGoogle Scholar
Hench, L.L & Clark, D.E, “Surface properties and performance prediction of alternative waste forms,”Florida Univ., Gainesville (1986).Google Scholar
Mendel, J. E., “Final report of the defence high-level-waste leaching mechanisms program,” Pacific Northwest National Laboratory (1984).CrossRefGoogle Scholar
Jantzen, C. M., Brown, K. G. and Pickett, J. B.. Int. J. App. Gla. Sci. 1, 38-62 (2010).CrossRefGoogle Scholar