Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:49:49.130Z Has data issue: false hasContentIssue false

Facile Hydrothermal Synthesis of Molybdenum Disulfide (MoS2) as Advanced Electrodes for Super Capacitors Applications

Published online by Cambridge University Press:  07 June 2016

H. Adhikari
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152, USA
C. Ranaweera
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
R. Gupta
Affiliation:
Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
S. R. Mishra*
Affiliation:
Department of Physics, The University of Memphis, Memphis, TN 38152, USA
Get access

Abstract

A facile hydrothermal method was used to synthesize molybdenum disulfide (MoS2) microspheres. The effect of hydrothermal reaction time on morphology and electrochemical properties of MoS2 microspheres was evaluated. X-ray diffraction showed presence of crystalline MoS2 structure, where content of crystalline phase was observed to increase with hydrothermal reaction time. Electrochemical properties of MoS2 were evaluated using cyclic voltammetry (CV) and galvanostatic charge-discharge in 3M KOH solution. Specific capacitance of nanostructured MoS2 was observed to be between 68 F/g and 346 F/g at different scan rates along with excellent cyclic stability. High power density (∼1200 W/kg) and energy density (∼5 Wh/kg) was observed for MoS2 sample synthesized for 24 hours of hydrothermal reaction time. Overall optimal electrocapactive performance was observed for sample prepared for 24 hours of reaction time. It is demonstrated that the obtained MoS2 microspheres with three-dimensional architecture has excellent electrochemical performances as electrode materials for supercapacitor applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Conway, B. E., Electrochemical Supercapacitors, Vol. 1, Kluwer Academic/Plenum Publishers, New York, (1999).CrossRefGoogle Scholar
Fan, L. Q., Liu, G. J., Zhang, C. Y., Wu, J. H., and Wei, Y. L., Int J Hydrogen Energy, 40, 10150 (2015).Google Scholar
Ratha, S. and Rout, C. S., ACS Appl. Mater. Interfaces, 5, 11427 (2013).CrossRefGoogle Scholar
Huang, K. J., Zhang, J. Z., Shi, G. W., and Liu, Y. M., Electrochim. Acta, 132, 397 (2014).Google Scholar
Feng, J., Sun, X., Wu, C. Z., Peng, L. L., Lin, C. W., Hu, S. L., Yang, J. L., and Xie, Y., J. Am. Chem. Soc. 133, 17832 (2011).Google Scholar
Lembke, D., Bertolazzi, S., and Kis, A., Acc. Chem. Res. 48, 100 (2015).Google Scholar
Deng, Z. H., Li, L., Ding, W., Xiong, K., and Wei, Z. D.,Chem. Commun. 51, 1893 (2015).CrossRefGoogle Scholar
Yue, G., Wu, J., Xiao, Y., Huang, M., Lina, J., and Lin, J. Y., J. Mater. Chem. A, 1, 1495 (2013).Google Scholar
Li, W., Yang, Y., Zhang, G., and Zhang, Y. W., Nano Lett. 15, 1691 (2015).Google Scholar
Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., and Zhang, H., Nat. Chem. 5, 263 (2013).Google Scholar
Ramakrishna Matte, H. S. S., Gomathi, A., Manna, A. K., Late, D. J., Datta, R., Pati, S. K., and Rao, C. N. R., Angew. Chem. Int. Ed. 49, 4059 (2010).Google Scholar
Bachelier, J., Tillette, M. J., Duchet, J. C., and Cornet, D., J. Catal. 87, 292 (1984).Google Scholar
Chorkendorff, I., Jaramillo, T. F., Jorgensen, K. P., Bonde, J., Nielsen, J. H., and Horch, S., Science, 317, 100 (2007).Google Scholar
Zhu, Q. J., Wegener, S. L., Xie, C., Uche, O., Neurock, M., and Marks, T. J., Nat. Chem. 5, 104 (2013).CrossRefGoogle Scholar
Enyashin, A., Gemming, S., and Seifert, G., Eur. Phys. J. Spec. Top. 149, 103 (2007).Google Scholar
Wilcoxon, J. P., Newcomer, P. P., and Samara, G. A., Journal of Applied Physics 81, 7934 (1997).Google Scholar
Schneemeyer, L. F. and Wrighton, M. S., J. Am. Chem. Soc. 101, 6496 (1979).Google Scholar
Lessner, P.M., McLarnon, F.R., Winnick, J., and Cairns, E.J., J. Appl. Electrochem. 22, 927 (1992).Google Scholar
Huang, W. Z., Xu, Z. D., Liu, R., Ye, X. F., and Zheng, Y. F., Mater. Res. Bull. 43, 2799 (2008).Google Scholar
Finn, S. T. and Macdonald, J. E., Adv. Energy Mater. 4, 1400495 (2014).Google Scholar
Segawa, K., Santo, S., Hydrotreatment and hydrocracking of oil fractions, in: Delmon, B., Froment, G. F., Grange, P. (Eds.), Stud. Surf. Sci. Catal. 127, 129 (1999).Google Scholar
Devers, E., Afanasiev, P., Jouguet, B., and Vrinat, M., Catal. Lett. 82, 13 (2002).Google Scholar
Li, W. J., Shi, E. W., Ko, J. M., Chen, Z. Z., Ogino, H., and Fukuda, T., J. Cryst. Growth, 250, 418 (2003).CrossRefGoogle Scholar
Zhang, H. P., Lin, H. F., Zheng, Y., Hu, Y. F., and MacLennan, A., Appl. Catal. B 165, 537 (2015).Google Scholar
Li, W. J., Shi, E. W., Ko, J. M., Chen, Z. Z., Ogino, H., and Fukuda, T., J. Cryst. Growth, 250, 418 (2003).Google Scholar
Huang, W. Z., Xu, Z. D., Liu, R., Ye, X. F. and Zheng, Y. F., Mater. Res. Bull. 43, 2799 (2008).Google Scholar
Miki, Y., Nakazato, D., Ikuta, H., Uchida, T. and Wakihara, M., J. Power Sources 54, 508, (1995).CrossRefGoogle Scholar
Wang, S., Li, G., Du, G., Jiang, X., Feng, C., Guo, Z., and Kim, S. J., Chin. J. Chem. Eng. 18, 910 (2010).Google Scholar
Khawula, T. N. Y., Raju, K., Franklyn, P. J., Sigalas, I., and Ozoemena, K. I., J. Mater. Chem. A, (2016) DOI: 10.1039/C6TA00114A Google Scholar
Shi, X. X., Pan, L. L., Chen, S. P., Xiao, Y., Liu, Q. Y., Yuan, L. J., Sun, J. T., and Cai, L. T., Langmuir, 25, 5940 (2009).Google Scholar
Feng, Y., Zhang, M., Guo, M., and Wang, X., Crystal Growth & Design, 10, 1500 (2010).CrossRefGoogle Scholar
Vincent, S. P., Biochem. J.177, 757 (1979).Google Scholar
Huang, K., Zhang, J., Shi, G., and Liu, Y., Electrochim. Acta, 132, 397 (2014).Google Scholar