Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T12:56:40.175Z Has data issue: false hasContentIssue false

Fabrication of ultrathin and flexible graphene-based devices for in vivo neuroprosthetics

Published online by Cambridge University Press:  22 January 2018

Dmitry Kireev
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Pegah Shokoohimehr
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Mathis Ernst
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Viviana Rincón Montes
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Kagithiri Srikantharajah
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Vanessa Maybeck
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Bernhard Wolfrum
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany; Neuroelectronics, Munich School of Bioengineering, Technical University of Munich (TUM), Germany & BCCN Munich, Boltzmannstr. 11, 85748Garching, Germany
Andreas Offenhäusser*
Affiliation:
Institute of Bioelectronics (PGI-8/ICS-8), Forschungszentrum Jülich, 52425Jülich, Germany;
Get access

Abstract

Graphene based devices have already proven to be extremely sensitive and very useful in a wide spectrum of bioelectronics research. In the manuscript we describe a method to fabricate arrays of graphene-based probes, requiring minimal number of fabrication steps, while maintaining overall device functionality. These polyimide-based probes are approximately 6 µm thick, therefore ultraflexible, yet robust and stable. Devices, such as graphene field effect transistors (GFETs) and graphene multielectrode arrays (GMEAs) have been designed, fabricated and tested for their performance. The flexible GFETs exhibit sensitivity, i.e. transconductance up to 700 µS/V, which an order of magnitude larger compared to typical silicon transistors. Multiple probe per wafer design allows us to fabricate different kinds of devices on one 4-inch wafer, consequently increasing a possible range of applications from e.g. retinal to cortical neuroprosthetics.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lebedev, M.A. and Nicolelis, M.A.L., Trends Neurosci. 29, 536 (2006).CrossRefGoogle Scholar
Lacour, S.P., Courtine, G., and Guck, J., Nat. Rev. Mater. 1, 16063 (2016).Google Scholar
Weltman, A., Yoo, J., and Meng, E., Micromachines 7, (2016).Google Scholar
Fromherz, P., Eur. Biophys. J. 28, 254 (1999).Google Scholar
Qing, Q., Pal, S.K., Tian, B., Duan, X., Timko, B.P., Cohen-Karni, T., Murthy, V.N., and Lieber, C.M., Proc. Natl. Acad. Sci. U. S. A. 107, 1882 (2010).CrossRefGoogle Scholar
Wang, P. and Liu, Q., Cell-Based Biosensors: Principles and Applications (Artech House, Boston, MA, 2009).Google Scholar
Fabbro, A., Scaini, D., León, V., Vázquez, E., Cellot, G., Privitera, G., Lombardi, L., Torrisi, F., Tomarchio, F., Bonaccorso, F., Bosi, S., Ferrari, A.C., Ballerini, L., and Prato, M., ACS Nano 10, 615 (2016).Google Scholar
Veliev, F., Briançon-Marjollet, A., Bouchiat, V., and Delacour, C., Biomaterials 86, 33 (2016).Google Scholar
Blaschke, B.M., Tort-Colet, N., Guimerà-Brunet, A., Weinert, J., Rousseau, L., Heimann, A., Drieschner, S., Kempski, O., Villa, R., Sanchez-Vives, M. V., and Garrido, J.A., 2D Mater. 4, 25040 (2017).CrossRefGoogle Scholar
Kuzum, D., Takano, H., Shim, E., Reed, J.C., Juul, H., Richardson, A.G., de Vries, J., Bink, H., Dichter, M.A., Lucas, T.H., Coulter, D.A., Cubukcu, E., and Litt, B., Nat. Commun. 5, 5259 (2014).Google Scholar
Kireev, D., Seyock, S., Lewen, J., Maybeck, V., Wolfrum, B., and Offenhäusser, A., Adv. Healthc. Mater. 6, 1601433 (2017).Google Scholar
Kireev, D., Seyock, S., Ernst, M., Maybeck, V., Wolfrum, B., and Offenhäusser, A., Biosensors 7, 1 (2016).Google Scholar
Kireev, D., Zadorozhnyi, I., Qiu, T., Sarik, D., Brings, F., Wu, T., Seyock, S., Maybeck, V., Lottner, M., Blaschke, B., Garrido, J., Xie, X., Vitusevich, S., Wolfrum, B., and Offenhausser, A., IEEE Trans. Nanotechnol. 16, 140 (2017).Google Scholar
Kireev, D., Brambach, M., Seyock, S., Maybeck, V., Fu, W., Wolfrum, B., and Offenhäusser, A., Sci. Rep. 7, 6658 (2017).CrossRefGoogle Scholar
Park, D.-W., Schendel, A.A., Mikael, S., Brodnick, S.K., Richner, T.J., Ness, J.P., Hayat, M.R., Atry, F., Frye, S.T., Pashaie, R., Thongpang, S., Ma, Z., and Williams, J.C., Nat. Commun. 5, 5258 (2014).Google Scholar
Brusius, J., “3-dimensionale penetrierende Multielektrodenarrays zur Stimulation und Ableitung in der Retina,” Ph.D. thesis, RWTH Aachen, Aachen, 2015Google Scholar
Drieschner, S., Guimerà, A., Cortadella, R.G., Viana, D., Makrygiannis, E., Blaschke, B.M., Vieten, J., and Garrido, J.A., J. Phys. D. Appl. Phys. 50, 95304 (2017).Google Scholar
Kireev, D., Sarik, D., Wu, T., Xie, X., Wolfrum, B., and Offenhäusser, A., Carbon N. Y. 107, 319 (2016).Google Scholar
Kotman, N., (2008) “Bidirectional Coupling of Neurons with a Microchip Integrating Microelectrodes and Field-Effect Transistors” Ph.D. thesis, RWTH Aachen, Aachen, 2008.Google Scholar
Irimia-Vladu, M., Głowacki, E.D., Voss, G., Bauer, S., and Sariciftci, N.S., Mater. Today 15, 340 (2012).Google Scholar
Krause, M., Ingebrandt, S., Richter, D., Denyer, M., Scholl, M., Sprössler, C., and Offenhäusser, A., Sensors Actuators, B Chem. 70, 101 (2000).Google Scholar