Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T13:37:36.508Z Has data issue: false hasContentIssue false

Electronic Transport in Oxidized Zigzag Graphene Nanoribbons

Published online by Cambridge University Press:  16 January 2017

Venkata Sai Pavan Choudary Kolli
Affiliation:
Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, India - 400076
Vipin Kumar
Affiliation:
Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, India - 400076
Shobha Shukla
Affiliation:
Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, India - 400076
Sumit Saxena*
Affiliation:
Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, India - 400076
Get access

Abstract

The electronic and transport properties of graphene nanoribbons strongly depends on different types of adatoms. Oxygen as adatom on graphene is expected to resemble oxidized graphene sheets and enable in understanding their transport properties. Here, we report the transport properties of oxygen adsorbed zigzag edge saturated graphene nanoribbon. It is interesting to note that increasing the number of oxygen adatoms on graphene sheets lift the spin degeneracy as observed in the transmission profile of graphene nanoribbons. The relative orientation of the oxygen atom on the graphene basal plane is detrimental to flow of spin current in the nanoribbon.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S. et al. Science 306, 666 (2004).Google Scholar
Cahangirov, S., Topsakal, M., Aktürk, E., Şahin, H., Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).Google Scholar
Saxena, S., Chaudhary, R. P. and Shukla, S., Sci. Rep. 6, 31073 (2016)Google Scholar
Chaudhary, R. P., Saxena, S. and Shukla, S., Nanotechnology 27, 495701 (2016).Google Scholar
Zhou, S. Y. et al. Nat. Mater.6, 770 (2007).CrossRefGoogle Scholar
Quhe, R. et al. NPG Asia Mater.4, e16 (2012).Google Scholar
Murayama, H., Maeda, T., Nature 345, 791 (1990).CrossRefGoogle Scholar
Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., Tour, J.M., Nature 458, 872 (2009).Google Scholar
Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Nature 458, 877 (2009).Google Scholar
Hiura, H., Appl. Surf. Sci. 222, 374 (2004).Google Scholar
Tapasztó, L., Dobrik, G., Lambin, P. and Biró, L. P., Nat. Nanotechnol. 3, 397 (2008).Google Scholar
Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K., J. Phys. Soc. Jpn. 65, 1920 (1996).Google Scholar
Lan, J., Zheng, X.H., Song, L.L., Wang, R.N., Zeng, Z., Solid State Commun. 152 1635 (2012).CrossRefGoogle Scholar
Mao, Y., Yuan, J., Zhong, J., J. Phys.: Condens. Matter 20, 115209 (2008).Google Scholar
Chen, X., Song, K., Zhou, B., Wang, H., Zhou, G., App. Phys. Lett. 98, 093111 (2011).Google Scholar
Zhang, G. P., Liu, X., Wang, C. Z., Yao, Y. X., Zhang, J., Ho, K. M., J. Phys.: Condens. Matter 25, 105302 (2013).Google Scholar
Ataca, C., Aktürk, E., Şahin, H., and Ciraci, S., J. Appl. Phys. 109, 013704 (2011).Google Scholar
Gracia-Espino, E., Lopez-Urıas, F., Terronesd, H., Terrones, M., RSC Adv. 6, 21954 (2016).Google Scholar
Saxena, S., Tyson, T. A and Negusse, E., J. Phys. Chem. Lett. 1, (2011) 3433 Google Scholar
Saxena, S., Tyson, T. A., Shukla, S., Negusse, E., Chen, H. and Bai, J., Appl. Phys. Lett. 99, (2011) 013104.Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).Google Scholar
Kohn, W. and Sham, L. J., Phys. Rev., 140, A1133 (1965).Google Scholar
Ozaki, T., Kino, H., Yu, J., Han, M. J., Kobayashi, N., Ohfuti, M., Ishii, F., Ohwaki, T. and Weng, H., OpenMX Website, http://www.openmx-square.org/ (Accessed June 2016)Google Scholar
Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett., 45, 566 (1980).Google Scholar
Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
Troullier, N. and Martins, J. L., Phys. Rev. B: Condens. Matter, 43, 1993 (1991).Google Scholar
Ozaki, T., Phys. Rev. B: Condens. Matter, 67, 155108 (2003).Google Scholar
Ozaki, T. and Kino, H., Phys. Rev. B: Condens. Matter Mater. 69, 195113 (2004).Google Scholar
Ozaki, T., Nishio, K., Weng, H. and Kino, H., Phys Rev B. 81, 075422 (2010).Google Scholar