Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T15:54:03.122Z Has data issue: false hasContentIssue false

Electrical Tunability of Surface Tension of Vertical Graphene Nanosheets

Published online by Cambridge University Press:  15 April 2020

Mahmood Akbari*
Affiliation:
UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa Nanoscience African Network (NANOAFNET), Material Research Division, iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa
Mohammed Kamruddin
Affiliation:
Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Tamil Nadu-603102, India
Razieh Morad
Affiliation:
UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa Nanoscience African Network (NANOAFNET), Material Research Division, iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa
Malik Maaza
Affiliation:
UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa Nanoscience African Network (NANOAFNET), Material Research Division, iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa
*
Get access

Abstract

The contact angle is a material property determined by the surface tensions between substrate, liquid and the air. In this study, the surface wettability of vertical graphene nanosheets (VGNs) which are carbon nanostructures consisting of a few layers of graphene sheets vertically standing on the substrates, were developed by applying different voltages on the substrate. The contact angle of the water droplet on VGNs/Cu decreased from 123° to 16° with increasing the applied voltage which indicated the hydrophobic and hydrophilic transition of VGNs surfaces. It is anticipated that this member of the carbon material family (VGNs) could serve as a tunable wettability coting for future improvements in electronic devices and open a new perspective to the construction of smart material surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Meng, L.-Y. and Park, S.-J.: Carbon Lett ., (2014), 15, 89104.CrossRefGoogle Scholar
Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., and Takahashi, K.: Chem. Phys. Lett. , (1999), 309, 165.CrossRefGoogle Scholar
Wu, Y., Qiao, P., Chong, T., and Shen, Z.: Adv. Mater., (2002), 14, 64.3.0.CO;2-G>CrossRefGoogle Scholar
Hiramatsu, M., Shiji, K., Amano, H., and Hori, M.: Appl. Phys. Lett. , 84 (2004), 4708.CrossRefGoogle Scholar
Hiramatsu, M. and Hori, M.: Jpn. J. Appl. Phys. , (2006), 45, 522.Google Scholar
Watanabe, H, Kondo, H., Sekine, M., Hiramatsu, M., Hori, M.: Jpn. J. Appl. Phys., (2012), 25, 01AJ07.CrossRefGoogle Scholar
Khamlich, S., Abdullaeva, Z., Kennedy, J. V., Maaza, M.: Appl. Surf. Sci. , (2017), 405, 329-336.CrossRefGoogle Scholar
Khenfouch, M., Baitoul, M., Maaza, M.: Opt. Mater. , (2012), 34 (8), 1320-1326.CrossRefGoogle Scholar
Khenfouch, M., Buttner, M., Baitoul, M., Maaza, M.: Graphene, (2014), 3 (2), 7-13.CrossRefGoogle Scholar
Wang, J. J., Zhu, M. Y., Outlaw, R. A., Zhao, X., Manos, D. M., and Holloway, B. C.: Appl. Phys. Lett., (2004), 85, 1265.CrossRefGoogle Scholar
Machino, T., Takeuchi, W., Kano, H., Hiramatsu, M., and Hori, M.: Appl. Phys. Express, (2009), 2, 025001.CrossRefGoogle Scholar
Conway, B. E., Birss, V., and Wojtowicz, J.: J. Power Sources, (1997), 66, 1.CrossRefGoogle Scholar
Khamlich, S., Khamlich, T., Dhlamini, MS., Khenfouch, M., Mothadi, BM, Maaza, M.: J. Colloid & Interface Sci. , (2017), 493, 130-137.CrossRefGoogle Scholar
Maaza, M., Ngom, BD., Achouri, M., Manikandan, M.: Vacuum , (2015), 114, 172-187.CrossRefGoogle Scholar
Iseki, S., Ohta, T., Aomatsu, A., Ito, M., Kano, H., Higashijima, Y., and Hori, M.: Appl. Phys. Lett., (2010), 96, 153704.CrossRefGoogle Scholar
Li, X., Li, L., Wang, Y., Li, H. and Bian, X.: J. Phys. Chem. C , (2013), 117, 1410614112.CrossRefGoogle Scholar
Melios, C., Giusca, C. E., Panchal, V. and Kazakova, O.: 2D Mater. , (2018), 5, 022001.CrossRefGoogle Scholar
Wang, Y., Sinha, S., Hu, L. and Das, S.: Phys. Chem. Chem. Phys. , (2017), 19, 2742127434.CrossRefGoogle Scholar
Du, F., Huang, J., Duan, H., Xiong, C. and Wang, J.: Appl. Surf. Sci. , (2018), 454, 249255.CrossRefGoogle Scholar
Ghosh, S., Ganesan, K., Polaki, S. R., Mathews, T., Dhara, S., Kamruddin, M.: Appl. Surf. Sci., (2015), 349, 576-581.CrossRefGoogle Scholar
Ghosh, S., Mathews, T., Gupta, B., Das, A., Krishna, N. G., Kamruddin, M.: Nano-Structures & Nano Objects, (2017), 10, 42-50.CrossRefGoogle Scholar
Ghosh, S., Ganesan, K., Polaki, S. R., Ravindran, T. R., Krishna, N. G., Kamruddin, M., Tyagi, A. K.: J. of Raman Spec. , (2014), 45, 642-649.CrossRefGoogle Scholar
Akbari, M., Kamruddin, M., Morad, R., Khamlich, S., Bucher, R.: Materials Today: Proceeding, http://doi.org/10.1016/j.matpr.2020.03.305.Google Scholar
Ferrari, A. C., Basko, D. M.: Nat. Nanotechnol , (2013), 8, 235246.CrossRefGoogle Scholar
Baranov, A. V., Bekhterev, A. N., Bobovich, Y. S., Petrov, V. I.: Opt. Spectrosc. (1987), 62, 612616.Google Scholar
Thomsen, C., Reich, S.: Phys. Rev. Lett. , (2000), 85, 52145217.CrossRefGoogle Scholar
Vidano, R., Fischbach, D. B.: J. Am. Ceram. Soc. (1978), 61, 1317.CrossRefGoogle Scholar
Nemanich, R. J., Solin, S. A.: Phys. Rev. B , (1979), 20, 392401.CrossRefGoogle Scholar
Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cançado, L. G., Jorio, A., Saito, R.: Phys. Chem. Phys., (2007), 9, 12761291.CrossRefGoogle Scholar
Wenzel, R. N.: Ind. Eng. Chem., (1936), 28, 988.CrossRefGoogle Scholar
Han, Z. J., Tay, B. K., Tan, C. M., Shakerzadeh, M. and Ostrikov, K.: ACS Nano, (2009), 3, 3031.CrossRefGoogle Scholar
Mugele, F. and Baret, J. C.: J. Phys.: Condens. Matter., (2005), 17, 705.Google Scholar
Wang, Z. K., Ci, L. J., Chen, L., Nayak, S., Ajayan, P. M. and Koratkar, N.: Nano Lett., (2007), 7, 697.CrossRefGoogle Scholar
Lippmann, G.: Ann. Chim. Phys., (1875), 5, 494.Google Scholar
Pu, J., Wan, S., Lu, Z., Zhang, G., Wang, L., Zhang, X., Xue, Q.: J. Mater. Chem. A, (2013), 1(4), 1254-1260.CrossRefGoogle Scholar
Lomax, D. J., Kant, P., Williams, A. T., Patten, H. V., Zou, Y., Juel, A., Dryfe, R. A. W.: Soft Matter, (2016), 12, 8798-8804.CrossRefGoogle Scholar
Jiang, Q. G., Ao, Z. M., Chu, D. W. and Jiang, Q.: J. Phys. Chem. C, (2012), 116, 1932119326.CrossRefGoogle Scholar
Vijayarangamuthu, K., Ahn, S., Seo, H., Yoon, S. H., Park, C. M. and Jeon, K. J.: Adv. Mater., (2016), 28, 661667.CrossRefGoogle Scholar
Velizhanin, K. A., Dandu, N. and Solenov, D.: Phys. Rev. B: Condens. Matter Mater. Phys., (2014), 89, 155414.CrossRefGoogle Scholar