Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T02:29:31.402Z Has data issue: false hasContentIssue false

Electrical Characterization and Nanoindentation of Opto-electro-mechanical Percolative Composites from 2D Layered Materials

Published online by Cambridge University Press:  03 August 2017

Jorge A. Catalán
Affiliation:
Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, El Paso, TX 79968, U.S.A.
Ricardo Martínez
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, U.S.A.
Yirong Lin
Affiliation:
Department of Mechanical Engineering, University of Texas at El Paso, El Paso, TX 79968, U.S.A.
Anupama B. Kaul*
Affiliation:
Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, TX 79968, U.S.A.
*
*E-mail: akaul@utep.edu
Get access

Abstract

In this paper, we have developed composites with Poly-methyl methacrylate (PMMA) as the matrix material, while transition metal dichalcogenides (TMDCs), MoS2 and WS2 and graphite served as the filler materials. The PMMA was chosen as the matrix material due to its low-cost, wide availability, as well as its promising mechanical and optical properties for enabling opto-electro-mechanical sensing devices. The amount of filler material used ranged from 100 mg/ml up to 400 mg/ml. With the aid of designed fixtures we related the electrical properties of the PMMA-based composite sensors to the degree of strain or deformation. Additionally, a nanoindenter was used to measure the modulus of elasticity, with values as low as 2 GPa and as high as 20 GPa for the graphite composites, and hardness values which ranged from 0.1 GPa to ∼ 1.6 GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., V Morozov, S., Jiang, D., Zhang, Y., V Dubonos, S., V Grigorieva, I., and Firsov, A. A., Science. 306, 666 (2004).CrossRefGoogle Scholar
Bhimanapati, G. R., Lin, Z., Meunier, V., Jung, Y., Cha, J., Das, S., Xiao, D., Son, Y., Strano, M. S., Cooper, V. R., Liang, L., Louie, S. G., Ringe, E., Zhou, W., Kim, S. S., Naik, R. R., Sumpter, B. G., Terrones, H., Xia, F., Wang, Y., Zhu, J., Akinwande, D., Alem, N., Schuller, J. A., Schaak, R. E., Terrones, M., and Robinson, J. A., ACS Nano. 9(12), 1150911539 (2015).Google Scholar
Geim, A. K., Science. 324, 1530 (2009).CrossRefGoogle Scholar
Matyba, P., Yamaguchi, H., Eda, G., Chhowalla, M., Edman, L., and Robinson, N. D., ACS Nano. 4, 637 (2010).Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S., Nat. Nanotechnol. 7, 699 (2012).Google Scholar
Kaul, A. B., J. Mater Res. 29, 348 (2014).Google Scholar
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff Nature, R. S.. 442, 282 (2006).Google Scholar
Kim, J., Lee, M.-S., Jeon, S., Kim, M., Kim, S., Kim, K., Bien, F., Hong, S. Y., and Park, J.-U., Adv. Mater. 27, 3292 (2015).Google Scholar
Lee, K., Park, J., Lee, M.-S., Kim, J., Hyun, B. G., Kang, D. J., Na, K., Lee, C. Y., Bien, F., and Park, J.-U., Nano Letters. 14, 2647 (2014).Google Scholar
Choi, S., Park, J., Hyun, W., Kim, J., Kim, J., Lee, Y. B., Song, C., Hwang, H. J., Kim, J. H., Hyeon, T., and Kim, D.-H., ACS Nano. 9, 6626 (2015)Google Scholar
An, B. W., Gwak, E.-J., Kim, K., Kim, Y.-C., Jang, J., Kim, J.-Y., and Park, J.-U., Nano Lett. 16, 471 (2016).CrossRefGoogle Scholar
Mas-Ballesté, R., Gómez-Navarro, C., Gómez-Herrero, J., and Zamora, F., Nanoscale. 3, 2030 (2011).CrossRefGoogle Scholar
Wilson, A. D., J. A.; Yoffe, Adv. Phys. 18, 193 (1969).Google Scholar
Geim, A. K. and Novoselov, K. S., Nat. Mater. 6, 183 (2007).Google Scholar
Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R. J., Shvets, I. V., Arora, S. K., Stanton, G., Kim, H.-Y., Lee, K., Kim, G. T., Duesberg, G. S., Hallam, T., Boland, J. J., Wang, J. J., Donegan, J. F., Grunlan, J. C., Moriarty, G., Shmeliov, A., Nicholls, R. J., Perkins, J. M., Grieveson, E. M., Theuwissen, K., McComb, D. W., Nellist, P. D., and Nicolosi, V., Science. 331, 568 (2011).Google Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S., and Someya, T., Nature 499, 458 (2013).Google Scholar
Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., and Hata, K., Nat. Nanotechnol. 6, 296 (2011).Google Scholar
Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S., and Park, I., ACS Nano 8, 5154 (2014).Google Scholar
Hempel, M., Nezich, D., Kong, J., and Hofmann, M., Nano Lett. 12, 5714 (2012).Google Scholar
Reboul, J-P, Moussalli, G., Int. J. Polym. Mater. 5, 133 (1976).Google Scholar
Leigh, S. J., Bradley, R. J., Purssell, C. P., Billison, D. R., and Hutchins, D. A., Plos One. 7(11), (2012)Google Scholar