Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T12:13:58.007Z Has data issue: false hasContentIssue false

Direct Fractographic Evaluation of Multilayer CNx/TiN Films by Magnetron Sputtering

Published online by Cambridge University Press:  02 January 2018

Gongsheng Song
Affiliation:
Suzhou Institute of Wuhan University, Suzhou, 215123, China School of Physics and Technology, Wuhan University, Wuhan, 430072, China
Qiang Fu
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, 430072, China
Chunxu Pan*
Affiliation:
Suzhou Institute of Wuhan University, Suzhou, 215123, China School of Physics and Technology, Wuhan University, Wuhan, 430072, China
Get access

Abstract

In this paper, a multilayer CNx/TiN composite film on high-speed steel substrate was prepared by using a multi-arc assisted DC reactive magnetron sputtering system. The cross-section observations of the fracture surface reveal that the films show a pure cleavage fracture due to its super-high hardness, and the interfacial strength between the film and substrate is associates with the film thickness, i.e., 2μm is a critical thickness for the present deposition. That is to say, there is no disbonding or cracking at the interface when the film thickness is less than 2μm, while the interfacial failure is generated if the film thickness is larger than 2μm. This direct SEM observation of the fracture surface provides a distinct image for evaluating the mechanical property and also analyzing the failure mechanism of the films.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liu, A. Y. and Cohen, M. L., Science, 245, 841(1989).CrossRefGoogle Scholar
Neidhardt, J., Czigány, Z., and Hultman, L., Surf. Eng., 19, 299(2013).Google Scholar
Widlow, I. and Chung, Y. W., Int. Mater. Rev., 47, 153(2013).Google Scholar
Shi, C. Y. and Ma, Z., Plasma Sci. Technol., 9, 460(2007).Google Scholar
Lv, C. F., Zhang, G. F., Cao, B. S., He, Y. Y., Hou, X. D., and Song, Z. X., Surf. Eng., 32, 541(2016).Google Scholar
Guo, J., Hu, X. J., Lu, Y. H., and Shen, Y. G., Proced. Eng., 67, 388(2013).Google Scholar
Wang, T.S., Yu, D.L., Tian, Y.J., Xiao, F.R., He, J.L., Li, D.C., Wang, W.K., and Li, L., Chem. Phys. Lett., 334, 7(2001).Google Scholar
Bakoglidis, K. D., Nedelcu, I., Schmidt, S., Greczynski, G., Ehret, P., and Hultman, L., Tribol. Int., 98, 100(2016).Google Scholar
Tang, J., Meng, H. M., and Liang, X., J. Clean. Prod., 137, 903(2016).Google Scholar
Bakoglidis, K. D., Schmidt, S., Garbrecht, M., Ivanov, I. G., Jensen, J., Greczynski, G., and Hultman, L., J. Vac. Sci. Technol. A, 33, 05E112(2015).Google Scholar
Wu, Y.-S. and Wu, S.-W., J. Alloy Compd., 489, 275(2010).Google Scholar
Bakoglidis, K. D., Schmidt, S., Greczynski, G., and Hultman, L., Surf. Coat. Technol., 302, 454(2016).Google Scholar
Zhou, B., Liu, Z., Piliptsou, D. G., Rogachev, A. V., Yu, S., Wu, Y., Tang, B., and Rudenkov, A. S., Appl. Surf. Sci., 361, 169(2016).CrossRefGoogle Scholar
Zhou, B., Jiang, X., Rogachev, A. V., Piliptsou, D. G., Sun, D., and Shen, R., Surf. Interface Anal., 46, 591(2014).CrossRefGoogle Scholar
Yu, D.L., Tian, Y.J., He, J.L., Xiao, F.R., Wang, T.S., Li, D.C., Li, L., Zheng, G., and Yanagisawa, O., J Cryst. Growth, 233, 303(2001).Google Scholar
Liu, C.S., Wu, D.W., Fu, D.J., Ye, M.S., Gao, P., Peng, Y.G., and Fan, X. J., Surf. Coat. Technol., 128-129, 144149(2000).Google Scholar
Li, D., Lin, X.-W., Cheng, S.-C., Dravid, V. P., Chung, Y.-W., Wong, M.-S., and Sproul, W. D., Appl. Phys. Lett., ,68, 1211(1996).Google Scholar
Vyas, A., Li, L. K. Y., Zhou, Z. F., and Shen, Y. G., Surf. Eng.,, 22, 15(2013).Google Scholar
Ding, J.N., Meng, Y.G., and Wen, S., Thin Solid Films, 371, 178(2000).Google Scholar
Michler, J. and Blank, E., Thin Solid Films, 381, 119(2001).Google Scholar
Wu, D.W., Fan, W., Guo, H.X., He, M.B., Meng, X.Q., and Fan, X. J., Solid State Commun., 103, 193(1997).Google Scholar
Hadrboletz, A., Weiss, B., and Khatibi, G., Int. J. Fract., 107, 307(2001).Google Scholar
Vyas, A., Li, K. Y., and Shen, Y. G., Surf. Coat. Technol.,, 203, 967(2009).Google Scholar
Zhang, G.D., Fu, Q., and Pan, C.X., Mater. Sci. & Technol., 13, 235(2005). (In Chinese)Google Scholar
Ortiz-Mancilla, M. J., Mariño-Berroterán, C., Berríos-Ortiz, J. A., Mesmacque, G., and Puchi-Cabrera, E. S., Surf. Eng., 20, 345(2013).Google Scholar
Broitman, E., Hellgren, N., Wänstrand, O., Johansson, M.P., Berlind, T., Sjöström, H., Sundgren, J.-E., Larsson, M., and Hultman, L., Wear, 248, 55(2001).Google Scholar