Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T19:08:41.796Z Has data issue: false hasContentIssue false

Design of Novel Deep Ultra-Violet ac-Driven Electroluminescence Devices Based on Boron Nitride nano-Materials

Published online by Cambridge University Press:  24 February 2020

W. Yuan
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
T. E. Wickramasinghe
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
W. M. Jadwisienczak*
Affiliation:
School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
*
Get access

Abstract

The hexagonal boron nitride (h-BN) as a wide bandgap semiconductor is an attractive material for deep ultraviolet (DUV) generation. In this paper we study the prospect of using the stacking hexagonal boron nitride nanosheets (h-BNNS) for generating DUV emission by impact excitation in alternating current driven thin electroluminescence devices (ACTEL) based on BN phosphors having different morphologies. A theoretical approach considered is based on the impact excitation model for generating DUV from stacking h-BNNS under a high electric field. It was found that in the h-BNNS with a thickness of 90 nm biased at 3.33×109 V/m, the quantum yield can reach to 86.8%, and the power conversion efficiency of 1.68%. To achieve the same quantum yield and power conversion efficiency for the ACTEL based on h-BN single crystal, the active phosphor layer should be 2 μm thick when biased at 1.5×108 V/m.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Watanabe, K., Taniguchi, T., and Kanda, H., Nat. Mater. 3 (6), 404409 (2004).CrossRefGoogle Scholar
(a) Larach, S. and Shrader, R.E., Phys. Rev. 104, 68 (1956) and references therein. (b) Simon, L. and Shrader, R.E., U.S. Patent No. US2921218A (12 Jan, 1960).CrossRefGoogle Scholar
Kubota, Y., Watanabe, K., Tsuda, O., and Taniguchi, T., Science 317 (5840), 932-934 (2007).CrossRefGoogle Scholar
Taniguchi, T., Rev. High-Pressure Sci. and Technol. 29 (2), 121-128 (2019).CrossRefGoogle Scholar
Lee, S. H., Jeong, H., Kim, D. Y., Seo, S. Y., Han, C., Okello, O. F. N., Lo, J. I., Peng, Y. C., Oh, C. H., Lee, G. W., Shim, J. I., Cheng, B. M., Song, K., Choi, S. Y., Jo, M. H., and Kim, J. K., Opt. Express 27, 19692 (2019)CrossRefGoogle Scholar
Doan, T.C., Li, J., Lin, J.Y., and Jiang, H.X., AIP Adv 4 (10), 107126 (2014).CrossRefGoogle Scholar
Jiang, H.X. and Lin, J.Y., Semicond. Sci. Technol. 29 (8), 084003 (2014).CrossRefGoogle Scholar
Li, D., Jiang, K., Sun, X., and Guo, C., Adv. Opt. Photonics 10 (1), 43 (2018).CrossRefGoogle Scholar
Hirayama, H., in: Light-Emitting Diode- An Outlook on the Empirical Features and Its Recent Technological Advancements, edited by Thirumalai, J. (IntechOpen, London, 2018), pp127-158.Google Scholar
Chen, Y., Wu, H., Han, E., Yue, G., Chen, Z., Wu, Z., Wang, G., and Jiang, H., Appl. Phys. Lett. 106 (16), 162102 (2015).CrossRefGoogle Scholar
Wunderer, T., Northrup, J. E., and Johnson, N. M., in: III-Nitride Ultraviolet Emitters Springer Series in Materials Science, edited by Kneissl, M. and Rass, J. (Springer, Cham, 2015), pp. 193-217.Google Scholar
Vij, D.R., The Handbook of Electroluminescent Materials (IoP, Institute of Physics, Bristol, UK, 2004).CrossRefGoogle Scholar
Bringuier, E., J. Appl. Phys. 70 (8), 4505-4512 (1991).CrossRefGoogle Scholar
Mengle, K.A. and Kioupakis, E., APL Mater 7 (2), 021106 (2019).CrossRefGoogle Scholar
Bringuier, E., Phys. Rev. B. 49, 7974 (1994).CrossRefGoogle Scholar
Hippel, A.V. and Alger, R. S., Physical Review 76, 127 (1949).CrossRefGoogle Scholar
Fröhlich, H., Royal Soc. A 160 (901), 230 (1937).Google Scholar
Wickramasinghe, T. E., thesis, M.S., University, Ohio, 2019. Retrieved from https://etd.ohiolink.edu/pg_10?::NO:10:P10_ETD_SUBID:181684Google Scholar
(a) Zalm, P., Philips Res. Rep. 11(5), 353-399 (1956). (b) Zalm, P., Philips Res. Rep 11(6), 417-451 (1956).Google Scholar
Kurakevych, O. and Solozhenko, V., Molecules 21 (10), 1399 (2016).CrossRefGoogle Scholar
Feng, P., Sajjad, M., Li, E.Y., Zhang, H., Chu, J., Aldalbahi, A., and Morell, G., Beilstein J. Nanotechnol. 5, 11861192 (2014).CrossRefGoogle Scholar
Sajjad, M., Jadwisienczak, W.M., and Feng, P., Nanoscale 6 (9), 4577-4582 (2014).CrossRefGoogle ScholarPubMed
Kosydar, R., Mroz, W., Jelinek, M., and Kocourek, T., in: Functional Properties of Nanostructured Materials NATO Science Series II: Mathematics, Physics and Chemistry, edited by Kassing, R., Petkov, P., Kulisch, W., and Popov, C. (Springer, Dordrecht, 2006), pp. 295298.CrossRefGoogle Scholar
Bourrellier, R., Amato, M., Tizei, L.H.G., Giorgetti, C., Gloter, A., Heggie, M.I., March, K., Stéphan, O., Reining, L., Kociak, M., and Zobelli, A., ACS Photonics 1 (9), 857-862 (2014).CrossRefGoogle Scholar
Ribeiro, R.M. and Peres, N.M.R., Phys. Rev. B 83, 235312 (2011).CrossRefGoogle Scholar
Cassabois, G., Valvin, P., and Gil, B., Phys. Rev. B 93, 1 (2016).CrossRefGoogle Scholar
Kasap, S., Koughia, C., and Ruda, H.E., Springer Handbook of Electronic and Photonic Materials (Springer Cham, 2017), pp. 30, 31, 32.CrossRefGoogle Scholar
Ridley, B.K., J. Phys. C Solid State Phys. 16 (17), 33733388 (1983).CrossRefGoogle Scholar
Hattori, Y., Taniguchi, T., Watanabe, K., and Nagashio, K., Phys. Rev. B 97, 045425 (2018).CrossRefGoogle Scholar
Neumark, G., Phys. Rev. 116 (6), 1425 (1959).CrossRefGoogle Scholar
Lee, G.H., Yu, Y.J., Lee, C., Dean, C., Shepard, K.L., Kim, P., and Hone, J., Appl. Phys. Lett. 99 (24), 243114 (2011).CrossRefGoogle Scholar
Liljequist, D., Radiat. Phys. Chem. 81, 1703 (2012)CrossRefGoogle Scholar
Kotakoski, J., Jin, C.H., Lehtinen, O., Suenaga, K., and Krasheninnikov, A. V., Phys. Rev. B 82 (11), 113404 (2010).CrossRefGoogle Scholar