Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T17:02:53.652Z Has data issue: false hasContentIssue false

A Comparative study of Structural, Thermal and Conducting properties of Polyaniline, Polypyrrole and Poly (Ani-co-Py) Copolymer

Published online by Cambridge University Press:  06 June 2019

Monika Saini
Affiliation:
Department of Physics, D.C.R University of Science & Technology, Murthal, Sonipat, Haryana (India)
Nidhi Sheoran
Affiliation:
Department of Physics, D.C.R University of Science & Technology, Murthal, Sonipat, Haryana (India)
Rajni Shukla
Affiliation:
Department of Physics, D.C.R University of Science & Technology, Murthal, Sonipat, Haryana (India)
Tanuj Kumar
Affiliation:
Department of Nano Science and Material, Central University of Jammu, Jammu (India)
S.K. Singh*
Affiliation:
Department of Physics, D.C.R University of Science & Technology, Murthal, Sonipat, Haryana (India)
*
*Corresponding author: sksingh2k6@gmail.com
Get access

Abstract

Conducting polymers namely polyaniline (PANI), polypyrrole (PPy) and their copolymer poly(Aniline-co-Pyrrole)(PAPY) were prepared via in-situ polymerization process. The X-ray diffraction (XRD), infra-red (IR)and field emission-scanning electron microscopy (FESEM) studies confirm the formation of polyaniline, polypyrrole and their copolymer with aniline and pyrrole. The XRD pattern of copolymer displayed an amorphous structure as compared to polycrystalline homopolymers. FE-SEM results of Poly (Ani-co-Py) shows the existence of agglomerated spherical structured particles in the copolymer matrix, while the polyaniline and polypyrrole exhibit the porous tubular and spherical structures, respectively. Thermo gravimetric analysis (TGA) shows that the copolymer is more stable as compared to their homopolymers at higher temperature. Four probe resistivity (FPR) studies indicate that copolymer has the lower conductivity and act as a diode. Vector network analyzer (VNA) measurements observe a significant shielding effectiveness (SE) for all the conducting polymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Saini, M., Singh, S.K., Shukla, R., and Deswal, T., in (Jammu, India, 2018), p. 030033.Google Scholar
Saini, P., Jalan, R., and Dhawan, S.K., Journal of Applied Polymer Science 108, 1437 (2008).CrossRefGoogle Scholar
Jiang, J., Li, L., and Xu, F., Journal of Physics and Chemistry of Solids 68, 1656 (2007).CrossRefGoogle Scholar
Saini, M., Singh, S.K., Shukla, R., and Kumar, A., Journal of Inorganic and Organometallic Polymers and Materials (2018). https://doi.org/10.1007/s10904-018-0907-7Google Scholar
Jiang, J., Li, L., and Zhu, M., Reactive Functional Polymers 68, 57 (2008).CrossRefGoogle Scholar
Saini, M., Shukla, R., and Singh, S.K., Journal of Inorganic and Organometallic Polymers and Materials (2019). DOI: 10.1007/s10904-019-01163-7Google Scholar
Ćirić-Marjanović, G., Synthetic Metals 170, 31 (2013).CrossRefGoogle Scholar
Kamran, M., Ullah, H., Shah, A.-H.A., Bilal, S., Tahir, A.A., and Ayub, K., Polymer 72, 30 (2015).CrossRefGoogle Scholar
Liang, B., Qin, Z., Li, T., Dou, Z., Zeng, F., Cai, Y., Zhu, M., and Zhou, Z., Electrochimica Acta 177, 335 (2015).CrossRefGoogle Scholar
Li, X., Zhang, X., and Li, H., Journal of Applied Polymer Science 81, 3002 (2001).CrossRefGoogle Scholar
Fusalba, F., and Belanger, D., Journal of Physical Chemistry B 103, 9044 (1999).CrossRefGoogle Scholar
Lim, V.W. L., Kang, E. T., Neoh, K. G ., Ma, Z. H., and Tan, K.L., Applied Surface Science 181, 317 (2001).CrossRefGoogle Scholar
Khairy, M., Journal of Alloys and Compounds 608, 283 (2014).CrossRefGoogle Scholar
El-Ghazzawy, E.H. and Alamri, S.N., Bulletin of Materials Science 38, 915 (2015).CrossRefGoogle Scholar
Le, T.-H., Kim, Y., and Yoon, H., Polymers 9, 150 (2017).CrossRefGoogle ScholarPubMed
Xu, P., Han, X., Wang, C., Zhao, H., Wang, J., Wang, X., and Zhang, B., The Journal of Chemistry B 112, 2775 (2008).CrossRefGoogle Scholar
Chen, W., Wang, J., Zhang, B., Wu, Q., and Su, X., Material Research Express 4, 126303 (2017).CrossRefGoogle Scholar
Zhang, H.-B., Yan, Q., Zheng, W.-G., He, Z., and Yu, Z.-Z., ACS Applied Material Interfaces 3, 918 (2011).CrossRefGoogle Scholar
Chen, S.A., and Huang, G.W., Journal of American Chemical Society 117, 10055 (1995).CrossRefGoogle Scholar
Huang, L. M., Wen, T.C, and Gopalan, A., Materials Letters 57 , 1765 (2003).CrossRefGoogle Scholar
Goodings, E. P., Chemical Society Reviews 5, 95 (1976).CrossRefGoogle Scholar
Patidar, D., Jain, N., Saxena, N.S., Sharma, K., and P Sharma, T., Brazilian Journal of Physics 36, 1210 (2006).CrossRefGoogle Scholar
Kulkarni, G., Velhal, N., Phadtare, V., and Puri, V., Journal of Material Science Materials in Electronics 28 , (2017). doi:10.1007/s10854-017-6402-zCrossRefGoogle Scholar
Chen, C.K. and Liepins, R., Electrical properties of polymers: Chemical principles, Hanser, Munich, 1987.Google Scholar
Lakshmi, K., John, H., Joseph, R., George, K.E., and Mathew, K.T., Microwave and optical technology letters 50, 504 (2008).CrossRefGoogle Scholar