Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T01:02:20.048Z Has data issue: false hasContentIssue false

Combining whispering gallery mode lasers and microstructured optical fibers: limitations, applications and perspectives for in-vivo biosensing

Published online by Cambridge University Press:  12 May 2016

Alexandre François*
Affiliation:
University of South Australia, Adelaide SA 5000, Australia The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Tess Reynolds
Affiliation:
The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Nicolas Riesen
Affiliation:
The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Jonathan M. M. Hall
Affiliation:
The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Matthew R. Henderson
Affiliation:
The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Enming Zhao
Affiliation:
The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, China
Shahraam Afshar V.
Affiliation:
University of South Australia, Adelaide SA 5000, Australia The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Tanya M. Monro
Affiliation:
University of South Australia, Adelaide SA 5000, Australia The Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide SA 5005, Australia
Get access

Abstract

Whispering gallery modes (WGMs) have been widely studied over the past 20 years for various applications, including biological sensing. While the WGM-based sensing approaches reported in the literature have shown tremendous performance down to single molecule detection, at present such sensing technologies are not yet mature and still have significant practical constraints that limit their use in real-world applications. Our work has focused on developing a practical, yet effective, WGM-based sensing platform capable of being used as a dip sensor for in-vivo biosensing by combining WGM fluorescent microresonators with silica Microstructured Optical Fibers (MOFs).

We recently demonstrated that a suspended core MOF with a dye-doped polymer microresonator supporting WGMs positioned onto the tip of the fiber, can be used as a dip sensor. In this architecture the resonator is anchored to one of the MOF air holes, in contact with the fiber core, enabling a significant portion of the evanescent field from the fiber to overlap with the sphere and hence excite the fluorescent WGMs. This architecture allows for remote excitation and collection of the WGMs. The fiber also permits easy manipulation of the microresonator for dip sensing applications, and hence alleviates the need for a complex microfluidic interface. More importantly, it allows for an increase in both the excitation and collection efficiency compared to free space coupling, and also improves the Q factor.

In this paper we present our recent results on microstructured fiber tip WGM-based sensors and show that this sensing platform can be used in clinical diagnostics, for detecting various clinically relevant biomarkers in complex clinical samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Foreman, M. R., Swaim, J. D., and Vollmer, F., Adv. Opt. Photon. 7, 168240 (2015).CrossRefGoogle Scholar
François, A., Zhi, Y., and Meldrum, A., in Photonic Materials for Sensing, Biosensing and Display Devices, edited by Serpe, M. J., Kang, Y. and Zhang, Q. M. (Springer, 2016), p. 237288.Google Scholar
Chiasera, A., Dumeige, Y., Féron, P., Ferrari, M., Jestin, Y., Conti, G. N., Pelli, S., Soria, S., and Righini, G. C., Laser Photon. Rev. 4, 457482 (2010).Google Scholar
Baaske, M. D., Foreman, M. R., and Vollmer, F., Nat. Nanotechnol. 9, 933939 (2014).Google Scholar
Ren, H.-C., Vollmer, F., Arnold, S., and Libchaber, A., Opt. Express 15, 1741017423 (2007).Google Scholar
Vollmer, F., Arnold, S., and Keng, D., Proc. Natl. Acad. Sci. U S A 105, 2070120704 (2008).Google Scholar
Vollmer, F. and Arnold, S., Nat. Methods 5, 591596 (2008).Google Scholar
Pasquardini, L., et al. , J. Biophoton. 6, 178187 (2013).Google Scholar
Lane, S., West, P., François, A., and Meldrum, A., Opt. Express 23, 25772590 (2015).Google Scholar
Fan, X. D. and White, I. M., Nat. Photon. 5, 591597 (2011).Google Scholar
White, I., Zhu, H., Suter, J., Fan, X., and Zourob, M., in Biosensors and Biodetection, edited by Rasooly, A. and Herold, K. (Humana Press, 2009), Vol. 503, p. 139165.Google Scholar
Rowland, K. J., François, A., Hoffmann, P., and Monro, T. M., Opt. Express 21, 1149211505 (2013).Google Scholar
Zhu, J., Ozdemir, S. K., Xiao, Y.-F., Li, L., He, L., Chen, D.-R., and Yang, L., Nat. Photon. 4, 4649 (2010).Google Scholar
Armani, D. K., Kippenberg, T. J., Spillane, S. M., and Vahala, K. J., Nature 421, 925928 (2003).Google Scholar
Su, J., Goldberg, A. F. G., and Stoltz, B. M., Light Sci. Appl. 5, e16001 (2016).Google Scholar
Shao, L., Jiang, X.-F., Yu, X.-C., Li, B.-B., Clements, W. R., Vollmer, F., Wang, W., Xiao, Y.-F., and Gong, Q., Adv. Mater. 25, 56165620 (2013).Google Scholar
Righini, G. C., Dumeige, Y., Féron, P., Ferrari, M., Conti, G. N., Ristic, D., and Soria, S., Riv. Nuovo Cimento 34, 435488 (2011).Google Scholar
Zhixiong, G., Haiyong, Q., and Stanley, P., J. Phys. D Appl. Phys. 39, 51335136 (2006).Google Scholar
Wang, P., Ding, M., Murugan, G. S., Bo, L., Guan, C., Semenova, Y., Wu, Q., Farrell, G., and Brambilla, G., Opt. Lett. 39, 52085211 (2014).Google Scholar
Scholten, K., Fan, X., and Zellers, E. T., Lab Chip 14, 38733880 (2014).CrossRefGoogle Scholar
Agarwal, M. and Teraoka, I., Anal. Chem. 87, 1060010604 (2015).Google Scholar
Ballard, Z., Baaske, M., and Vollmer, F., Sensors 15, 89688980 (2015).Google Scholar
François, A., Riesen, N., Ji, H., Afshar, S. V., and Monro, T. M., Appl. Phys. Lett. 106, 031104 (2015).Google Scholar
François, A., Reynolds, T., and Monro, T., Sensors 15, 11681181 (2015).Google Scholar
François, A., Rowland, K. J., Afshar, S. V., Henderson, M. R., and Monro, T. M., Opt. Express 21, 2256622577 (2013).Google Scholar
François, A., Rowland, K. J., and Monro, T. M., Appl. Phys. Lett. 99, 141111 (2011).Google Scholar
Nuhiji, E. and Mulvaney, P., Small 3, 14081414 (2007).Google Scholar
Himmelhaus, M., Krishnamoorthy, S., and François, A., Sensors 10, 62576274 (2010).Google Scholar
El Abed, A. I. and Taly, V., Opt. Mater. 36, 6468 (2013).Google Scholar
Ta, V. D., Chen, R., and Sun, H. D., Sci. Rep. 3, 1362 (2013).Google Scholar
Kryzhanovskaya, N. V., Maximov, M. V., and Zhukov, A. E., Quant. Electron. 44, 189200 (2014).CrossRefGoogle Scholar
Veluthandath, A. V. and Bisht, P. B., J. Appl. Phys. 118, 233102 (2015).Google Scholar
Zhi, Y., Valenta, J., and Meldrum, A., JOSA B 30, 30793085 (2013).Google Scholar
Himmelhaus, M. and François, A., Biosens. Bioelectron. 25, 418427 (2009).Google Scholar
Humar, M. and Hyun Yun, S., Nat. Photon. 9, 572576 (2015).Google Scholar
Schubert, M., Steude, A., Liehm, P., Kronenberg, N. M., Karl, M., Campbell, E. C., Powis, S. J., and Gather, M. C., Nano. Lett. 15, 56475652 (2015).Google Scholar
Monro, T. M., Warren-Smith, S., Schartner, E. P., François, A., Heng, S., Ebendorff-Heidepriem, H., and Afshar V, S., Opt. Fiber Technol. 16, 343356 (2010).Google Scholar
Chew, H., J. Chem. Phys. 87, 13551360 (1987).Google Scholar
Chew, H., Phys. Rev. A 38, 34103416 (1988).Google Scholar
Reynolds, T., Henderson, M. R., François, A., Riesen, N., Hall, J. M. M., Afshar, S. V., Nicholls, S. J., and Monro, T. M., Opt. Express 23, 1706717076 (2015).Google Scholar
White, I. M. and Fan, X., Opt. Express 16, 10201028 (2008).Google Scholar
François, A. and Himmelhaus, M., Appl. Phys. Lett. 94, 031101 (2009).Google Scholar
Spillane, S. M., Kippenberg, T. J., and Vahala, K. J., Nature 415, 621623 (2002).Google Scholar
Schuster, J., Brabandt, J., and von Borczyskowski, C., JOL 127, 224229 (2007).Google Scholar
Riesen, N., Reynolds, T., François, A., Henderson, M. R., and Monro, T. M., Opt. Express 23, 2889628904 (2015).Google Scholar
Reynolds, T., François, A., Riesen, N., Turvey, M. E., Nicholls, S. J., Hoffman, P., and Monro, T. M., Anal. Chem. 88, 40364040 (2016).Google Scholar
Venturini, J., Koudoumas, E., Couris, S., Janot, J. M., Seta, P., Mathis, C., and Leach, S., J. Mater. Chem. 12, 20712076 (2002).Google Scholar
Akbulut, M., Ginart, P., Gindy, M. E., Theriault, C., Chin, K. H., Soboyejo, W., and Prud’homme, R. K., Adv. Funct. Mater. 19, 718725 (2009).Google Scholar
Kosma, K., Zito, G., Schuster, K., and Pissadakis, S., Opt. Lett. 38, 13011303 (2013).Google Scholar
Li, H., Hao, S., Qiang, L., Li, J., and Zhang, Y., Appl. Phys. Lett. 102, 231908 (2013).Google Scholar
Lin, W., Zhang, H., Liu, B., Song, B., Li, Y., Yang, C., and Liu, Y., Sci. Rep. 5, 17791 (2015).Google Scholar
Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., and Johnson, S. G., Comp. Phys. Commun. 181, 687702 (2010).Google Scholar
Oraevsky, A. N., Quant. Electron. 32, 377400 (2002).Google Scholar
Decher, G., Science 277, 12321237 (1997).Google Scholar
Bolduc, O. R., Pelletier, J. N., and Masson, J.-F., Anal. Chem. 82, 36993706 (2010).Google Scholar
Soteropulos, C. E., Zurick, K. M., Bernards, M. T., and Hunt, H. K., Langmuir 28, 1574315750 (2012).Google Scholar
Kozak, K. R., Su, F., Whitelegge, J. P., Faull, K., Reddy, S., and Farias-Eisner, R., Proteomics 5, 45894596 (2005).Google Scholar
Buas, M. F., Gu, H., Djukovic, D., Zhu, J., Drescher, C. W., Urban, N., Raftery, D., and Li, C. I., Gynecol. Oncol. 140, 138144 (2016).Google Scholar
Spindel, S. and Sapsford, K., Sensors 14, 2231322341 (2014).Google Scholar
Humphries, J. M., Penno, M. A. S., Weiland, F., Klingler-Hoffmann, M., Zuber, A., Boussioutas, A., Ernst, M., and Hoffmann, P., BBA-Proteins Proteom. 1844, 10511058 (2014).Google Scholar
Vollmer, F., Arnold, S., Braun, D., Teraoka, I., and Libchaber, A., Biophys. J. 85, 19741979 (2003).Google Scholar
Huckabay, H. A. and Dunn, R. C., Sensor. Actuat. B-Chem. 160, 12621267 (2011).Google Scholar