Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T00:53:58.709Z Has data issue: false hasContentIssue false

3D Distributions of Chlorine and Sulphur Impurities in a Thin-Film Cadmium Telluride Solar Cell

Published online by Cambridge University Press:  22 May 2018

Thomas A. M. Fiducia*
Affiliation:
Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
Kexue Li
Affiliation:
Materials Department, Oxford University, Oxford, OX1 3PH, United Kingdom
Amit H. Munshi
Affiliation:
Colorado State University, Fort Collins, Colorado, 80523, USA
Kurt Barth
Affiliation:
Colorado State University, Fort Collins, Colorado, 80523, USA
Walajabad S. Sampath
Affiliation:
Colorado State University, Fort Collins, Colorado, 80523, USA
Chris R. M. Grovenor
Affiliation:
Materials Department, Oxford University, Oxford, OX1 3PH, United Kingdom
John M. Walls
Affiliation:
Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
Get access

Abstract

A cadmium chloride activation treatment is essential for the production of high efficiency cadmium telluride (CdTe) solar cells. However, the effects of the treatment on the distributions of chlorine and sulphur within the device are not fully understood. Here, the detailed locations of chlorine and sulphur in a treated CdTe cell are determined in three dimensions by high resolution dynamic SIMS measurements. Chlorine is found to be present in grain boundaries, grain interiors, extended defects within the grain interiors, at the front interface, and in the cadmium sulphide layer. In each of these regions, the chlorine is likely to have significant effects on local electronic properties of the material, and hence overall device performance. Sulphur is found to have a U-shaped diffusion profile within CdTe grains, indicating a mixed grain boundary and lattice diffusion regime.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moseley, J., Metzger, W. K., Moutinho, H. R., Paudel, N., Guthrey, H. L., Yan, Y., Ahrenkiel, R. K., and Al-jassim, M. M., “Recombination by grain-boundary type in CdTe,” J. Appl. Phys., vol. 118, 2015.CrossRefGoogle Scholar
Krasikov, D. and Sankin, I., “Defect interactions and the role of complexes in CdTe solar cell absorber,” J. Mater. Chem. A, vol. 5, pp. 35033513, 2017.CrossRefGoogle Scholar
Li, C., Wu, Y., Poplawsky, J., Pennycook, T. J., Paudel, N., Yin, W., Haigh, S. J., Oxley, M. P., Lupini, A. R., Al-Jassim, M., Pennycook, S. J., and Yan, Y., “Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells,” Phys. Rev. Lett., vol. 112, no. 15, p. 156103, Apr. 2014.CrossRefGoogle Scholar
Taylor, A. A., Major, J. D., Kartopu, G., Lamb, D., Duenow, J., Dhere, R. G., Maeder, X., Irvine, S. J. C., Durose, K., and Mendis, B. G., “A comparative study of microstructural stability and sulphur diffusion in CdS/CdTe photovoltaic devices,” Sol. Energy Mater. Sol. Cells, vol. 141, pp. 341349, 2015.CrossRefGoogle Scholar
Abbas, A., Swanson, D., Munshi, A., Barth, K. L., Sampath, W. S., Bowers, J. W., Kaminski, P. M., and Walls, J. M., “The Effect of a Post-Activation Annealing Treatment on Thin Film CdTe Device Performance,” 2015.Google Scholar
Hoppe, P., Cohen, S., and Meibom, A., “NanoSIMS: Technical Aspects and Applications in Cosmochemistry and Biological Geochemistry,” Geostand. Geoanalytical Res., vol. 37, no. 2, pp. 111154, 2013.CrossRefGoogle Scholar
Swanson, D. E., Kephart, J. M., Kobyakov, P. S., Walters, K., Cameron, K. C., Barth, K. L., Sampath, W. S., Drayton, J., and Sites, J. R., “Single vacuum chamber with multiple close space sublimation sources to fabricate CdTe solar cells,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 34, no. 2, p. 21202, 2016.CrossRefGoogle Scholar
Poplawsky, J. D., Li, C., Paudel, N. R., Guo, W., Yan, Y., and Pennycook, S. J., “Nanoscale doping profiles within CdTe grain boundaries and at the CdS/CdTe interface revealed by atom probe tomography and STEM EBIC,” Sol. Energy Mater. Sol. Cells, vol. 150, no. March, pp. 95101, 2016.CrossRefGoogle Scholar
Harrison, L. G., “Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides,” Trans. Faraday Soc., vol. 57, p. 1191, 1961.CrossRefGoogle Scholar
Swanson, D. E., Reich, C. R., Abbas, A., Shimpi, T. M., Liu, H., Ponce, F., Zhang, H., Metzger, W., Walls, J. M., Sampath, W. S., and Holman, Z. C., “CdCl2 Passivation of CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells -,” J. Appl. Phys.Google Scholar
Capper, P. and Garland, J., Mercury Cadmium Telluride: Growth, Properties and Application, 1. 2010.CrossRefGoogle Scholar
Durose, K., Edwards, P. R., and Halliday, D. P., “Materials aspects of CdTe/CdS solar cells,” J. Cryst. Growth, vol. 197, no. 3, pp. 733742, 1999.CrossRefGoogle Scholar
Yan, Y., Dhere, R. G., Jones, K. M., and Al-Jassim, M. M., “Influence of substrate structure on the growth of CdTe thin films,” J. Appl. Phys., vol. 89, no. 11 I, pp. 59445948, 2001.CrossRefGoogle Scholar
Munshi, A. H., Kephart, J., Abbas, A., Raguse, J., Beaudry, J., Barth, K., Sites, J., Walls, J., and Sampath, W., “Polycrystalline CdSeTe / CdTe Absorber Cells With 28 mA/cm2 Short-Circuit Current,” pp. 15, 2017.Google Scholar