Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:24:17.567Z Has data issue: false hasContentIssue false

True and brittle micas: composition and solid-solution series

Published online by Cambridge University Press:  05 July 2018

G. Tischendorf
Affiliation:
Bautzner Strasse 16, D-02763 Zittau, Germany
H.-J. Förster*
Affiliation:
Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany
B. Gottesmann
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany
M. Rieder
Affiliation:
Institute of Materials Chemistry, TU Ostrava, 17. listopadu 15/2172, CZ-708 33 Ostrava-Poruba, Czech Republic

Abstract

Micas incorporate a wide variety of elements in their crystal structures. Elements occurring in significant concentrations in micas include: Si, IVAl, IVFe3+, B and Be in the tetrahedral sheet; Ti, VIAl, VIFe3+, Mn3+, Cr, V, Fe2+, Mn2+, Mg and Li in the octahedral sheet; K, Na, Rb, Cs, NH4, Ca and Ba in the interlayer; and O, OH, F, Cl and S as anions. Extensive substitutions within these groups of elements form compositionally varied micas as members of different solid-solution series. The most common true K micas (94% of almost 6750 mica analyses) belong to three dominant solid-solution series (phlogopite–annite, siderophyllite–polylithionite and muscovite–celadonite). Theirclassification parameters include: Mg/(Mg+Fetot) [=Mg#] formicas with VIR >2.5 a.p.f.u. and VIAl <0.5 a.p.f.u.; Fetot/(Fetot+Li) [=Fe#] formicas with VIR >2.5 a.p.f.u. and VIAl >0.5 a.p.f.u.; and VIAl/(VIAl+Fetot+Mg) [=Al#] formicas with VIR <2.5 a.p.f.u. The common true K micas plot predominantly within and between these series and have Mg6Li <0.3 a.p.f.u. Tainiolite is a mica with Mg6Li >0.7 a.p.f.u., or, fortr ansitional stages, 0.3–0.7 a.p.f.u. Some true K mica end-members, especially phlogopite, annite and muscovite, form binary solid solutions with non-K true micas and with brittle micas (6% of the micas studied). Graphical presentation of true K micas using the coordinates Mg minus Li (= mgli) and VIFetot+Mn+Ti minus VIAl (= feal) depends on theirclassification according to VIR and VIAl, complemented with the 50/50 rule.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, H., Matsueda, H., Ishihara, S. and Miura, H. (1994) Mineral chemistry of albite-enriched granitoids at Um Ara, Southeastern Desert, Egypt. International Geological Review, 36, 1067–1077.CrossRefGoogle Scholar
Ackermand, D. and Morteani, G. (1973) Occurrence and breakdown of paragonite and margarite in the Greiner Schieferser ies (Zillerthal Alps, Tyrol). Contributions to Mineralogy and Petrology, 40, 293–304.CrossRefGoogle Scholar
Ackermand, D., Herd, R. K. and Windley, B.F. (1986) Clintonite of regional metamorphic origin, along the CLASSIFICATION OF MICAS 305 margin of the Fiskenaesset complex, West Greenland. Neues Jahrbuch für Mineralogie, Abhandlungen, 155, 39–51.Google Scholar
Alietti, E., Brigatti, M.F. and Poppi, L. (1997) Clintonite-1M: Crystal chemistry and its relationships to closely associated Al-rich phlogopite. American Mineralogist, 82, 936–945.CrossRefGoogle Scholar
Ankinovich, S. G., Ankinovich, Ye. A., Rozhdestvenskaya, I.V. and Frank-Kamenetskiy, V.A. (1973) Chernykhite, a new barium-vanadium mica from northwestern Karatau. International Geological Review, 15, 641–647.CrossRefGoogle Scholar
Armbruster, T., Richards, R.T., Gnos, E., Pettke, T. and Herwegh, M. (2007) Unusual fibrous sodian tainiolite epitactic on phlogopite from marble xenoliths of Mont Saint-Hilaire, Quebec, Canada. The Canadian Mineralogist, 45, 541–549.CrossRefGoogle Scholar
Badanina, E.V., Veksler, I.V., Thomas, R., Syritso, L.F. and Trumbull, R.B. (2004) Magmatic evolution of Li-F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, Eastern Transbaikalia (Russia). Chemical Geology, 210, 113–133.CrossRefGoogle Scholar
Baltatzis, E. and Wood, B.J. (1977) The occurrence of paragonite in chloritoid schists from Stonehaven, Scotland. Mineralogical Magazine, 41, 211–216.CrossRefGoogle Scholar
Banno, Y., Miyawaki, R., Kogure, T., Matsubara, S., Kamiya, T. and Yamada, S. (2005) Aspidolite, the Na analogue of phlogopite, from Kasuga-mura, Gifu Prefecture, central Japan: description and structural data. Mineralogical Magazine, 69, 1047–1057.CrossRefGoogle Scholar
Beswick, A.E. (1973) An experimental study of alkali metal distribution in feldspars and micas. Geochimica et Cosmochimica Acta, 37, 183–208.CrossRefGoogle Scholar
Bigi, S., Brigatti, M.F., Mazzucchelli, M. and Rivalenti, G. (1993) Crystal chemical variations in Ba-rich biotites. Contributions to Mineralogy and Petrology, 113, 87–99.CrossRefGoogle Scholar
Boggs, R.C. (1992) A manganese-rich miarolitic granite pegmatite assemblage from the Sawtooth batholith, South central Idaho, U.S.A. Abstracts: International Symposium ‘‘Lepidolite 200’’, NovèMěsto na Moravě/Czechoslovakia, 29.8.–3.9.1992, 15–16.Google Scholar
Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen, J.B.H. (1989) Barium-titanium-rich phlogopites in marbles from Rogaland, southwest Norway. American Mineralogist, 74, 439–447.Google Scholar
Breit, G.N. (1995) Origin of clay minerals associated with V-U deposits in the Entrada Sandstone Placerville Mining District, southwestern Colorado. Economic Geology, 90, 407–419.CrossRefGoogle Scholar
Brigatti, M.F. and Poppi, L. (1993) Crystal chemistry of Ba-rich trioctahedral micas-1M. European Journal of Mineralogy, 5, 857–871.CrossRefGoogle Scholar
Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C. (1996) Crystal chemistry and petrologic significance of Fe3++-rich phlogopite from the Tapira carbonatite complex, Brazil. American Mineralogist, 81, 913–927.CrossRefGoogle Scholar
Brod, J.A., Gaspar, J.C., de Araújo, D.P., Gibson, S.A., Thompson, R.N. and Junqueira-Brod, T.C. (2001) Phlogopite and tetra-ferriphlogopite from Brazilian carbonatite complexes: petrogenetic constraints and implications for mineral-chemistry systematics. Journal of Asian Earth Sciences, 19, 265–296.CrossRefGoogle Scholar
Bryanchaninova, N.I., Makejev, A.B., Zubkova, N.B. and Filippov, V.N. (2004) Sodium-strontium mica. Na0.50Sr0.25Al2(Na0.25&0.75)Al1.25Si2.75O10(OH)2 from the Rubin field. Doklady Akademii Nauk, 395, 101–107.(in Russian).Google Scholar
Bucher, H., Fazis, Y., de Capitani, Chr. and Grapes, R. (2005) Blueschists, eclogites, and decompression assemblages of the Zermatt-Saas ophiolite: Highpressure metamorphism of subducted Thetys lithosphere. American Mineralogist, 90, 821–835.CrossRefGoogle Scholar
Bucher-Nurminen, K. (1976) Occurrence and chemistry of xanthophyllite in roof pendants of the Bergell granite, Sondrio, northern Italy. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 413–426.Google Scholar
Burke, E.A.J. and Ferraris, G. (2005) New minerals and nomenclature modifications approved in 2004 by the Commission on New Minerals and Mineral Names, International Mineralogical Association: IMA No. 2004-012. The Canadian Mineralogist, 43, 830.CrossRefGoogle Scholar
Burt, D.M. (1991) Vector representation of lithium and othermica compositions Pp. 113–129 in: Progress in Metamorphic and Magmatic Petrology (Perchuk, L.L., editor), Cambridge University Press, Cambridge, UK.Google Scholar
černý, P. and Burt, D. M. (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites Pp. 257–297 in: Micas (Bailey, S.W., editor) Reviews in Mineralogy, 13, Mineralogical Society of America, Washington, D.C. Google Scholar
černý, P., Staněk, J., Novák, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kavalová, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rozná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55, 177–201.CrossRefGoogle Scholar
černý, P., Chapman, R., Teertstra, D. K. and Novák, M. (2003) Rubidium- and cesium-dominant micas in granite pegmatites. American Mineralogist, 88, 1832–1835.CrossRefGoogle Scholar
Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REErich biotite differentiates in the A-type granite pluton of Suzhou (Eastern China): the key role of fluorine. Journal of Petrology, 35, 919–962.CrossRefGoogle Scholar
Chen-Shurong and Wu-Gongbao (1987) Mineralogical study of Mn-biotite in miarolitic granite fom Kuiqi, Fujian. Dizhi Lun ping (Geol. Rev.), 33, 222–228.(in Chinese).Google Scholar
Cooper, A.F., Paterson, L.A. and Reid, D.L. (1995) Lithium in carbonatites – consequence of an enriched mantle source. Mineralogical Magazine, 59, 401–408.CrossRefGoogle Scholar
Costa, F., Dungan, M.A. and Singer, B.S. (2001) Magmatic Na-rich phlogopite in a suite of gabbroic crustal xenoliths from Volcán San Pedro, Chilean Andes: Evidence fora solvus relation between phlogopite and aspidolite. American Mineralogist, 86, 29–35.CrossRefGoogle Scholar
Craig, J.R., Sandhaus, D.J. and Guy, R.E. (1985) Pyrophanite MnTiO3 from Sterling Hill, New Jersey. The Canadian Mineralogist, 23, 491–494.Google Scholar
Dasgupta, S., Chakraborti, S., Sengupta, P., Bhattacharya, P.K. and Banerjee, H. (1989) Compositional characteristics of kinoshitalite from the SausarGr oup, India. American Mineralogist, 74, 200–202.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (2003) Rockforming Minerals. Sheet Silicates. Micas vol. 3A, 2nd edition (Fleet, M.E., editor). The Geological Society, London, 758 pp.Google Scholar
Doležalová, H., Houzar, S. and Škoda, R. (2005) Barium phlogopites and kinoshitalite-bearing mineral assemblage of forsterite marbles from Rožná uranium deposit, Moldanubicum, western Moravia. Scientiae Geologicae. Casopis moravskeho Muzea, 90, 75–88.Google Scholar
Doležalová, H., Houzar, S., Losos, Z. and Škoda, R. (2006) Kinoshitalite with a high magnesium content in sulphide-rich marbles from the Rožná uranium deposit, Western Moravia, Czech Republic. Neues Jahrbuch für Mineralogie, Abhandlungen, 182, 165–171.Google Scholar
Dymek, R.F. (1983) Titanium, aluminium and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. American Mineralogist, 68, 880–899.Google Scholar
Edgar, A.D. (1992) Barium-rich phlogopite and biotite from some Quaternary alkali mafic lavas, West Eifel, Germany. European Journal of Mineralogy, 4, 321–330.CrossRefGoogle Scholar
Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a new manganese mica, K(Mn3+ 2 Li)Si4O12, from the Hoskins mine, New South Wales, Australia. American Mineralogist, 74, 1360–1367.Google Scholar
Escuder-Viruete, J. and Pérez-Estaún, A. (2006) Subduction-related P-T path foreclogites and garnet glaucophanites from the Samaná Peninsula basement complex, northern Hispaniola. International Journal of Earth Sciences, 95, 995–1017.CrossRefGoogle Scholar
Eugster, H.P. and Munoz J. (1966) Ammonium micas: possible sources of atmospheric ammonia and nitrogen. Science, 151, 683–686.CrossRefGoogle Scholar
Ferry, J.M. (1981): Petrology of graphitic sulfide-rich schists from south-central Maine: an example of desulfidisation during prograde regional metamorphism. American Mineralogist, 66, 908–930.Google Scholar
Filut, M.A., Rule, A.C. and Bailey, S.W. (1985) Crystal structure refinement of anandite-2Or, a barium- and sulfur-bearing trioctahedral mica. American Mineralogist, 70, 1298–1308.Google Scholar
Foord, E.E., Martin, R.F., Fitzpatrick, J.J., Taggert, Jr., J E. and Crock, J.G. (1991) Boromuscovite, a new member of the mica group, from the Little Three mine pegmatite, Ramona district, San Diego County, California. American Mineralogist, 76, 1998–2001.Google Scholar
Foster, M.D. (1960a) Interpretation of the composition of trioctahedral micas. U.S. Geological Survey, Professional Paper, 354–B, 11–49.Google Scholar
Foster, M.D. (1960b) Interpretation of the composition of lithium micas. U.S. Geological Survey, Professional Paper, 354–E, 115–147.Google Scholar
Frey, M., Bucher, K., Frank, E. and Schwander, H. (1982) Margarite in the Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 62, 21–45.Google Scholar
Frimmel, H.E., Hoffmann, D., Watkins, R.T. and Moore, J.M. (1995) An Fe analogue of kinoshitalite from the Broken Hill massive sulfide deposit in the Namaqualand Metamorphic Complex, South Africa. American Mineralogist, 80, 833–840.CrossRefGoogle Scholar
Frondel, C. and Einaudi, M. (1968) Zinc-rich micas from Sterling Hill, New Jersey. American Mineralogist, 53, 1752–1754.Google Scholar
Frondel, C. and Ito, J. (1966) Hendricksite, a new species of mica. American Mineralogist, 51, 1107–1123.Google Scholar
Gibson, G.M. (1979) Margarite in kyanite- and corundum-bearing anorthosite, amphibolite, and hornblendite from Central Fiordland, New Zealand. Contributions to Mineralogy and Petrology, 68, 171–179.CrossRefGoogle Scholar
Gnos, E. and Armbruster, Th. (2000) Kinoshitalite, Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry. American Mineralogist, 85, 242–250.CrossRefGoogle Scholar
Gnos, E., Armbruster, Th. and Villa, I.M. (2003) Norrishite, K(Mn3++ 2 Li)Si4O10(O)2, an oxymica with sugilite from the Wessels Mine, South Africa: Crystal chemistry and 40Ar-39Ardating. American Mineralogist, 88, 189–194.CrossRefGoogle Scholar
Godard, G. and Smith, D. (1999) Preiswerkite and Na- (Mg,Fe)-margarite in eclogites. Contributions to Mineralogy and Petrology, 136, 20–32.CrossRefGoogle Scholar
Gottesmann, B. and Tischendorf, G. (1978) Klassifikation, Chemismus und Optik trioktaedrischer Glimmer. Zeitschrift für Geologische Wissenschaften, 6, 681–708.Google Scholar
Graeser, S., Hetherington, C.L. and Gieré, R. (2003) Ganterite, a new barium-dominant analogue of muscovite from the Berisal Complex, Simplon Region, Switzerland. The Canadian Mineralogist, 41, 1271–1280.CrossRefGoogle Scholar
Grambling, J.A. (1984) Coexisting paragonite and quartz in sillimanitic rocks from New Mexico. American Mineralogist, 69, 79–87.Google Scholar
Greenwood, J.C. (1998) Barian-titanian micas from the Ilha da Trinidade, South Atlantic. Mineralogical Magazine, 62, 687–695.CrossRefGoogle Scholar
Grew, E.S., Yates, M.G., Adams, P.M., Kirkby, R. and Wiedenbeck, M. (1999) Harkerite and associated minerals in marble and skarn from Cresmore quarry, Riverside County, California and Cascade Slide, Adirondack Mountains, New York. The Canadian Mineralogist, 37, 277–296.Google Scholar
Guggenheim, S. and Frimmel, H.E. (1999) Ferrokinoshitalite, a new species of brittle mica from the Broken Hill mine, South Africa: Structural and mineralogical characterization. The Canadian Mineralogist, 37, 1445–1452.Google Scholar
Guggenheim, S., Schulze, W.A., Harris, G.A. and Lin, J.C. (1983) Concentric layer silicates: An optical second harmonic generation, chemical and X-ray study. Clays and Clay Minerals, 31, 251–260.CrossRefGoogle Scholar
Guidotti, C.V. and Sassi, F.P. (1998) Miscellaneous isomorphous substitutions in Na-K white micas: a review, with special emphasis to metamorphic micas. Rendiconti Lincei Scienze Fisiche e Naturali, 9, 57–78.CrossRefGoogle Scholar
Guidotti, C.V., Post, J.L. and Cheney, J.T. (1979) Margarite pseudomorphs after chiastolite in the Georgetown area, Cal i fornia. American Mineralogist, 64, 728–732.Google Scholar
Guidotti, C.V., Sassi, F.P., Sassi, R. and Blencoe, J.G. (1994) The effects of ferromagnesian components on the paragonite–muscovite solvus: a semiquantitative analysis based on chemical data forn atural paragonite–muscovite pairs. Journal of Metamorphic Geology, 12, 779–788.CrossRefGoogle Scholar
Harada, K., Honda, M., Nagashima, K. and Kanisawa, S. (1976) Masutomilite, manganese analogue of zinnwaldite, with special reference to masutomilitelepidolite- zinnwaldite series. Mineralogical Journal, 8, 95–109.CrossRefGoogle Scholar
Harlow, G.E. (1994) Jadeitites, albitites and related rocks from the Motagua Fault Zone, Guatemala. Journal of Metamorphic Geology, 12, 49–68.CrossRefGoogle Scholar
Harlow, G.E. (1995) Crystal chemistry of barian enrichment in micas from metasomatized inclusions in serpentinite, Motagua Fault Zone, Guatemala. European Journal of Mineralogy, 7, 775–789.CrossRefGoogle Scholar
Hawthorne, F.C., Teertstra, D.K. and Ĉerný, P. (1999) Crystal-structure refinement of a rubidian cesian phlogopite. American Mineralogist, 84, 778–781.CrossRefGoogle Scholar
Henderson, C.M.B. and Foland, K.A. (1996) Ba- and Tirich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: mechanisms of substitution. The Canadian Mineralogist, 34, 1241–1252.Google Scholar
Henderson, C.M.B., Martin, J.S. and Mason, R.A. (1989) Compositional relations in Li-micas from S.W. England and France: an ion- and electronmicroprobe study. Mineralogical Magazine, 53, 427–449.CrossRefGoogle Scholar
Hetherington, C.J., Gieré, R. and Graeser, S. (2003) Composition of barium-rich white micas from the Berisal complex, Simplon region, Switzerland. The Canadian Mineralogist, 41, 1281–1291.CrossRefGoogle Scholar
Higashi, S. (1978) Dioctahedral mica minerals with ammonium ions. Mineralogical Journal, 9, 16–27.CrossRefGoogle Scholar
Higashi, S. (1982) Tobelite, a new ammonium dioctahedral mica. Mineralogical Journal, 11, 138–146.CrossRefGoogle Scholar
Higashi, S. (2000) Ammonium-bearing mica and mica/ smectite of several pottery stone and pyrophyllite deposits in Japan: their mineralogical properties and utilization. Applied Clay Science, 16, 171–184.CrossRefGoogle Scholar
Höck, V. (1974) Coexisting phengite, paragonite and margarite in metasediments of the Mittlere Hohe Tauern, Austria. Contributions to Mineralogy and Petrology, 43, 261–273.CrossRefGoogle Scholar
Hoffer, E. (1978) On the ‘late’ formation of paragonite and its breakdown in pelitic rocks of the southern Damara Orogen (Namibia). Contributions to Mineralogy and Petrology, 67, 209–219.CrossRefGoogle Scholar
Hofmann, B.A. (1990) Reduction spheroids from northern Switzerland: Mineralogy, geochemistry and genetic models. Chemical Geology, 81, 55–81.CrossRefGoogle Scholar
Ishida, K., Hawthorne, F.C. and Hirowatari, F. (2004) Shirozulite, KMn2+ 3 (Si3Al)O10(OH)2, a new manganese- dominant trioctahedral mica: Description and crystal structure. American Mineralogist, 89, 232–238.CrossRefGoogle Scholar
Jiang, S.Y., Palmer, M.R., Li, Y.H. and Xue, C.J. (1996) Ba-rich micas from the Yindongzi-Daxigou Pb-Zn-Ag and Fe deposits, Qinling, northwestern China. Mineralogical Magazine, 60, 433–445.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987) Fractionation trends in mica and tourmaline as indicatorof pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51, 519–534.Google Scholar
Katagas, C. and Baltatzis, E. (1980) Coexisting celadonitic muscovite and paragonite in chlorite zone metapelites. Neues Jahrbuch für Mineralogie, Monatshefte, No. 5, 206–214.Google Scholar
Keusen, H.R. and Peters, Tj. (1980) Preiswerkite, an Alrich trioctahedral sodium mica from the Geisspfad ultramafic complex (Pennic Alps). American Mineralogist, 65, 1134–1137.Google Scholar
Kile, D.E. and Foord, E.E. (1998) Micas from the Pikes Peak batholith and its cogenetic granitic pegmatites, Colorado: Optical properties, composition, and correlation with pegmatite evolution. The Canadian Mineralogist, 36, 463–482.Google Scholar
Kogarko, L.N., Uvarova, Y.A., Sokolova, E., Hawthorne, F.C., Ottolini, L. and Grice, J.D. (2005) Oxykinoshitalite, a new mica from Fernando-de-Noronha island, Pernambuco, Brazil: Occurrence and crystal structure. The Canadian Mineralogist, 43, 1501–1510.CrossRefGoogle Scholar
Konzett, J., Miller, Chr., Armstrong, R. and Thöni, M. (2005) Metamorphic evolution of iron-rich mafic cumulates from the ötztal-Stubai crystalline complex, Eastern Alps, Austria. Journal of Petrology, 46, 717–747.Google Scholar
Koval, P.V., Kovalenko, V.I., Kuz’min, M.I., Pisarskaya, V.A. and Yurchenko, S.A. (1972) Mineral parageneses, composition and nomenclature of micas from rare-metal albite-bearing granitoids. Doklady Akademii Nauk SSSR, 202, 1174–1177.(in Russian).Google Scholar
Kuznetsova, L.G. and Zagorskiy, V.E. (1984) The micas of the metasomatic rocks in the rare-metal province of a spodumen pegmatite. Doklady Akademii Nauk SSSR, 275, 151–155.(in Russian).Google Scholar
Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. The Canadian Mineralogist, 35, 153–165.Google Scholar
Lahti, S.I. (1988) Occurrence and mineralogy of the margarite- and muscovite-bearing pseudomorphs after topaz in Juurako pegmatite, Orivesi, southern Finland. Bulletin of the Geological Society of Finland, 60, 27–43.CrossRefGoogle Scholar
Lahti, S.I. and Saikkonen, R. (1985) Bityite 2M1+ from Eräjärvi compared with related Li-Be brittle micas. Bulletin of the Geological Society of Finland, 57, 207–215.CrossRefGoogle Scholar
Le Bas, M.J., Keller, J., Tao, K.J., Wall, F., Williams, C.T. and Zhang, P.S. (1992) Carbonatite dykes at Bayan Obo, InnerMongolia, China. Mineralogy and Petrology, 46, 195–228.CrossRefGoogle Scholar
Li, G., Peacor, D.R., Coombs, D.S. and Kawach, Y. (1997) Solid solution in the celadonite family: The new minerals ferroceladonite, K2Fe2+ 2 Fe3+ 2 Si8O20(OH)4, and ferroaluminoceladonite, K2Fe2+ 2 Al2Si8O20(OH)4 . American Mineralogist, 82, 503–511.Google Scholar
Lin, J.-Ch. and Guggenheim, S. (1983) The crystal structure of a Li, Be-rich brittle mica: a dioctahedraltrioctahedral intermediate. American Mineralogist, 68, 130–142.Google Scholar
Lovering, F.J. and Widdowson, J.R. (1968) Electronmicroprobe analysis of anandite. Mineralogical Magazine, 36, 871–874.Google Scholar
Cha, Ma and Rossman, G.R. (2006) Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada. American Mineralogist, 91, 702–705.Google Scholar
MacKinney, J.A., Mora, C.I. and Bailey, S.W. (1988) Structure and crystal chemistry of clintonite. American Mineralogist, 73, 365–375.Google Scholar
Mansker, W.L., Ewing, R.C. and Keil, K. (1979) Bariantitanian biotites in nephelinites from Oahu, Hawaii. American Mineralogist, 64, 156–159.Google Scholar
Meunier, J.D. (1994) The composition and origin of vanadium-rich clay minerals in Colorado plateau Jurassic sandstones. Clays and Clay Minerals, 42, 391–401.CrossRefGoogle Scholar
Mesto, E., Schingaro, E., Cordari, F. and Ottolini, L. (2006) An electron microprobe analysis, secondary ion mass spectrometry, and single-crystal X-ray diffraction study of phlogopites from Mt. Vulture, Potenza, Italy: Consideration of cation partitioning. American Mineralogist, 91, 182–190.CrossRefGoogle Scholar
Mohamed, F.H., Abdalla, H.M. and Helba, H. (1999) Chemistry of micas in rare-metal granitoids and associated rocks, Eastern Desert, Egypt. International Geological Review, 41, 932–948.CrossRefGoogle Scholar
Monier, G. and Robert, J.L. (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O– Li2O–MgO–FeO–Al2O3–SiO2–H2O–HF at 600°C, 2 kbar PH2O: comparison with natural lithium micas. Mineralogical Magazine, 50, 641–651.Google Scholar
Morand, V.J. (1990) High chromium and vanadium in andalusite, phengite and retrogressive margarite in contact metamorphosed Ba-rich black slate from the Abercrombie Beds, New South Wales, Australia. Mineralogical Magazine, 54, 381–391.CrossRefGoogle Scholar
Morgan VI, G.B. and London, D. (1987) Alteration of amphibolitic wallrocks around the Tanco rareelement pegmatite, Bernic Lake, Manitoba. American Mineralogist, 72, 1097–1121.Google Scholar
Motoyoshi, Y. and Hensen, B.J. (2001) F-rich phlogopite stability in ultra-high-temperature metapelites from the Napier Complex, East Antarctica. American Mineralogist, 86, 1404–1413.CrossRefGoogle Scholar
Ni, Y. and Hughes, J.M. (1996) The crystal structure of nanpingite-2M2, the Cs end-memberof muscovite. American Mineralogist, 81, 105–110.CrossRefGoogle Scholar
Nickel, E.H. (1992) Solid solutions in mineral nomenclature. The Canadian Mineralogist, 30, 231–234.Google Scholar
Nieto, F. (2002) Characterization of coexisting NH4- and K-micas in very low-grade metapelites. American Mineralogist, 87, 205–216.CrossRefGoogle Scholar
Novák, M., Ĉerný, P., Cooper, M., Hawthorne, F.C., Ottolini, L., Xu Zhi and Liang, J.J. (1999) Boronbearing 2M1 polylithionite and 2M1+1M boromuscovite from an elbaite pegmatite at Řečice, western Moravia, Czech Republic. European Journal of Mineralogy, 11, 669–678.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Tlili, A., Smith, D.C. and Robert, J.L. (1993) The crystal structure of preiswerkite. American Mineralogist, 78, 1290–1298.Google Scholar
Oen, I.S. and Lustenhouwer, W.J. (1992) Cl-rich biotite, Cl-K hornblende, and Cl-rich scapolite in metaexhalites: Nora, Bergslagen, Sweden. Economic Geology, 87, 1638–1648.CrossRefGoogle Scholar
Pan, Y. and Fleet, M.E. (1991) Barian feldspar and barian-chromian muscovite from the Hemlo area, Ontario. The Canadian Mineralogist, 29, 481–498.Google Scholar
Pattiaratchi, D.B., Saari, E. and Sahama, Th.G. (1967) Anandite, a new barium iron silicate from Wilagedera, North Western Province, Ceylon. Mineralogical Magazine, 36, 1–4.Google Scholar
Pekov, I.V., Chukanov, N.V., Ferraris, G., Ivaldi, G., Pushcharovsky, D.Yu. and Zadov, A.E. (2003) Shirokshinite, K(NaMg2)Si4O10F2, a new mica with octahedral Na from Khibiny massif, Kola peninsula: descriptive data and structural disorder. European Journal of Mineralogy, 15, 447–454.CrossRefGoogle Scholar
Peretyazhko, I.S., Zagorskiy, V.Ye., Smirnov, S.Z. and Mikhailov, M.Y. (2004) Conditions of pocket formation in the Oktyabrskaya tourmaline-rich gem pegmatite (the Malkhan field, Central Transbaikalia, Russia). Chemical Geology, 210, 91–111.CrossRefGoogle Scholar
Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and Velilla, N. (1999) Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). American Mineralogist, 84, 55–69.CrossRefGoogle Scholar
Pöter, B., Gottschalk, M. and Heinrich, W. (2007) Crystal chemistry of synthetic K-feldspar–buddingtonite and muscovite–tobelite solid solutions. American Mineralogist, 92, 151–165.CrossRefGoogle Scholar
Reznitskiy, L.Z., Sklyarov, Ye.V., Ushchapovskaya, Z. F., Nartova, N.V., Yevsyunin, V.G, Kashayev, A.A. and Suvorova, L.F. (1997) Chromphyllite KCr2[AlSi3O10](OH,F)2 – a new dioctahedral mica. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 126, 110–119.(in Russian).Google Scholar
Rieder, M., Huka, M., Kučerova, D., Minařík, L., Obermajer, J. and Povondra, P. (1970) Chemical composition and physical properties of lithium-iron micas from the KruŠné hory Mts. (Erzgebirge). Part A: Chemical Composition. Contributions to Mineralogy and Petrology, 27, 131–158.CrossRefGoogle Scholar
Rieder, M. and Cavazzini, G., D’yakonov, Yu.S., Frank- Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval’, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1998) Nomenclature of the micas. The Canadian Mineralogist, 36, 905–912.Google Scholar
Robert, J.L. and Maury, R.C. (1979) Natural occurrence of a (Fe, Mn, Mg) tetrasilicic potassium mica. Contributions to Mineralogy and Petrology, 68, 117–123.CrossRefGoogle Scholar
Ruiz Cruz, M.D. (2004) Na biotite and intermediate Na- K biotite in schists from the Betic Cordilleras (Spain). Clay and Clay Minerals, 52, 603–612.Google Scholar
Schaller, W.T., Carron, M.K. and Fleischer, M. (1967) Ephesite, Na(LiAl2)(Al2Si2)O10(OH)2, a trioctahedral member of the margarite group, and related brittle micas. American Mineralogist, 52, 1689–1696.Google Scholar
Schreyer, W., Abraham, K. and Kulke, H. (1980) Natural sodium phlogopite coexisting with potasssium phlogopite and sodian aluminian talc in a metamorphic evaporite sequence from Derrag, Tell Atlas, Algeria. Contributions to Mineralogy and Petrology, 74, 223–233.CrossRefGoogle Scholar
Semenov, E.I. and Shmakin, B.M. (1988) On the composition of mica rocks in exocontacts of raremetal pegmatites from the Bastar area (India). Doklady Akademii Nauk SSSR, 303, 199–202.(in Russian).Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.Google Scholar
Shannon, R.D. and Prewitt C.T. (1969) Effective ionic radii in oxides and fluorides. Acta Crystallographica, B25, 925–946.Google Scholar
Shaw, C.S.J. and Penczak, R.S. (1996) Barium- and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell alkaline complex, northwestern Ontario. The Canadian Mineralogist, 34, 967–975.Google Scholar
Shen, G., Lu, Q. and Xu, J. (2000) Fluorannite: A new mineral of mica group from Western suburb of Suzhou City. Acta Petrologica et Mineralogica, 19, 355–362.Google Scholar
Skosyreva, M.V. and Vlasova, E.V. (1983) First occurrence of polylithionite from rare-metal granite pegmatites. Doklady Akademii Nauk SSSR, 272, 694–697.(in Russian).Google Scholar
Solie, D.N. and Su, S.-Ch. (1987) An occurrence of Barich micas from the Alaska Range. American Mineralogist, 72, 995–999.Google Scholar
Stoppa, F., Sharygin, V.V. and Cundari, A. (1997) New mineral data from the kamafugite–carbonatite association: the melilitolite from Pian di Celle, Italy. Mineralogy and Petrology, 61, 27–45.CrossRefGoogle Scholar
Shihua, Sun and Jie, Yu (1999) Fe-Li micas: a new approach to the substitution series. Mineralogical Magazine, 63, 933–945.CrossRefGoogle Scholar
Shihua, Sun and Jie, Yu (2000) Actual Fe-Li mica series as a series with □VI constant but not with AlIV or AlVI . Mineralogical Magazine, 64, 755–775.CrossRefGoogle Scholar
Thomas, R., Förster, H.J. and Heinrich, W. (2003) The behaviour of boron in a peraluminous granitepegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contributions to Mineralogy and Petrology, 144, 457–472.CrossRefGoogle Scholar
Tischendorf, G., Gottesmann, B., Förster, H.J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analysis and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809–834.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.J. and Gottesmann, B. (1999) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineralogical Magazine, 63, 57–74.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.J. and Gottesmann, B. (2001a) Minor- and trace-element composition of trioctahedral micas: a review. Mineralogical Magazine, 65, 249–276.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.J. and Gottesmann, B. (2001b) Tri- und dioktaedrische Glimmer: ein komplexes chemisches System. Zeitschrift für Geologische Wissenschaften, 29, 275–298.Google Scholar
Tischendorf, G., Rieder, M., Förster, H.J., Gottesmann, B. and Guidotti, C.V. (2004) A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68, 649–667.CrossRefGoogle Scholar
Tombolini, F., Brigatti, M.F., Marcelli, A., Cibin, G., Mottana, A. and Giuli, G. (2002) Local and average Fe distribution in trioctahedral micas: Analysis of Fe K-edge XANES spectra in the phlogopite–annite and phlogopite–tetraferriphlogopite joins on the basis of single-crystal XRD refinements. European Journal of Mineralogy, 14, 1075–1085.CrossRefGoogle Scholar
Tracy, R.J. (1991) Ba-rich micas from the Franklin Marble, Lime Crest and Sterling Hill, New Jersey. American Mineralogist, 76, 1683–1693.Google Scholar
Tracy, R.J. and Beard, J.S. (2003) Manganoan kinoshitalite in Mn-rich marble and skarn from Virginia. American Mineralogist, 88, 740–747.CrossRefGoogle Scholar
Treolar, P.J. (1987) Chromian muscovites and epidotes from Outokumpu, Finland. Mineralogical Magazine, 51, 593–599.Google Scholar
Tröger, W.E. (1962) überPr otholithionit und Zinnwaldit – Ein Beitrag zur Kenntnis von Chemismus und Optik derLit hiumglimmer. Beiträge zur Mineralogie und Petrographie, 8, 418–431.Google Scholar
Visser, D., Nijland, T.G., Lieftink, D.J. and Maijer, C. (1999) The occurrence of preiswerkite in a tourmaline– biotite–scapolite rock from Blengsvatn, Norway. American Mineralogist, 84, 977–982.CrossRefGoogle Scholar
Voncken, J.H.L., van derEer den, A.M.J. and Jansen, J.B.H. (1987) Synthesis of a Rb analogue of 2M1+ muscovite. American Mineralogist, 72, 551–554.Google Scholar
Wang, R.C., Hu, H., Zhang, A.C., Huang, X.L. and Ni, P. (2004) Pollucite and the cesium-dominant analogue of polylithionite as expressions of extreme Cs enrichment in the Yichun topaz–lepidolite granite, southern China. The Canadian Mineralogist, 42, 883–896.CrossRefGoogle Scholar
Weiss, Z., Rieder, M., Chmelová, M. and Krajíček, J. (1985) Geometry of the octahedral coordination in micas: a review of refined structures. American Mineralogist, 70, 747–757.Google Scholar
Wilson, P.N., Parry, W.T. and Nash, W.P. (1992) Characterization of hydrothermal tobelitic veins from black shale, Oquirrh Mountains, Utah. Clays and Clay Minerals, 40, 405–420.CrossRefGoogle Scholar
Wones, D.R. (1963) Phase equilibria of ‘ferriannite’, KFe3+ 2Fe+3Si3O10(OH)2 . American Journal of Science, 261, 581–596.Google Scholar
Yang, Y., Ni, Y., Wang, L. and Wang, W. (1988) Nanpingite: a new cesium mineral. Acta Petrologica et Mineralogica (China), 7, 49–58.Google Scholar
Yoshii, M., Togashi, Y. and Maeda, K. (1973) On the intensity changes of basal reflections with relation to barium content in manganoan phlogopites and kinoshitalite. Bulletin of the Geological Survey of Japan, 24, 543–550.Google Scholar
Zagorskiy, V.E. and Makrygin, A.I. (1976) The evolution of the mica composition at the exocontacts of Ta-bearing pegmatites (Russ.). Geokhimiya, 9, 1362–1369.Google Scholar
Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993) Barian titanian phlogopite from potassic lavas in northeast China: Chemistry, substitutions, and paragenesis. American Mineralogist, 78, 1056–1065.Google Scholar