Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T02:20:55.589Z Has data issue: false hasContentIssue false

Tennantite-(Ni), Cu6(Cu4Ni2)As4S13, from Luobusa ophiolite, Tibet, China: a new Ni member of the tetrahedrite group

Published online by Cambridge University Press:  31 May 2023

Yanjuan Wang
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China Department of Geosciences, University of Padova, Padova 35131, Italy
Rujun Chen
Affiliation:
School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
Xiangping Gu*
Affiliation:
School of Geosciences and Info-Physics, Central South University, Changsha 410083, Hunan, China
Zengqian Hou
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Fabrizio Nestola
Affiliation:
Department of Geosciences, University of Padova, Padova 35131, Italy
Zhusen Yang
Affiliation:
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
Guang Fan
Affiliation:
Beijing Research Institute of Uranium Geology, Beijing 100029, China
Guochen Dong
Affiliation:
School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
Lijuan Ye
Affiliation:
Tianjin Center, China Geological Survey, Tianjin 300170, China
Kai Qu
Affiliation:
Tianjin Center, China Geological Survey, Tianjin 300170, China School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
*
*Corresponding author: Xiangping Gu; Email: guxp2004@163.com

Abstract

The new mineral tennantite-(Ni), Cu6(Cu4Ni2)As4S13, has been discovered from the Luobusa Chromitite, Tibet, southwestern China. Tennantite-(Ni) occurs as anhedral grains ranging from 2 to 20 μm in size. In reflected light microscopy, tennantite-(Ni) is isotropic and appears yellow-greenish grey. Reflectance data for Commission on Ore Mineralogy wavelengths in air for tennantite-(Ni) are: 31.0 (470 nm), 29.6 (546 nm), 29.6 (589 nm) and 29.3 (650 nm). Electron microprobe analysis for holotype material gave the empirical formula (on basis of total cations = 16 apfu): M(2)Cu6 M(1)[Cu4.00(Ni0.97Cu0.53Fe0.50)Σ2.00]Σ6.00X(3)(As2.94Sb1.06)Σ4S12.77. Tennantite-(Ni) is cubic, with space group I$\bar{ 4}$3m (#217), a =10.2957(9) Å, V = 1091.4(3) Å3 and Z = 2. By using single-crystal X-ray diffraction, the crystal structure has been determined and refined to a final R1 = 0.0423 on the basis of 163 independent reflections [Fo > 4σ (Fo)]. The calculated seven strongest powder X-ray diffraction lines [d in Å (I) (hkl)] are: 2.972 (100) (222), 1.820 (83) (440), 2.574 (28) (400), 1.552 (18) (622), 3.640 (10) (220), 1.880 (10) (521) and 1.287 (7) (800). Tennantite-(Ni) is isostructural with other tetrahedrite-group minerals, and nickel is hosted at the tetrahedrally coordinated M(1) site, along with Cu and minor Fe. The mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2021-018).

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of the Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Andreasen, J.W., Makovicky, E., Lebech, B. and Karup-Møller, S. (2008) The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data. Physics and Chemistry of Minerals, 35, 447454.CrossRefGoogle Scholar
Apopei, A.I., Damian, G., Buzgar, N., Buzatu, A., Andráš, P., Milovska, S. and Della Ventura, G. (2017) The determination of the Sb/As content in natural tetrahedrite–tennantite and bournonite–seligmannite solid solution series by Raman spectroscopy. Mineralogical Magazine, 81, 14391456.CrossRefGoogle Scholar
Barbier, T., Lemoine, P., Gascoin, S., Lebedev, O.I., Kaltzoglou, A., Vaqueiro, P., Powell, A.V., Smith, R.I. and Guilmeau, E. (2015) Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases. Journal of Alloys and Compounds, 634, 253262.CrossRefGoogle Scholar
Belov, N.V. and Pobedimskaya, E.A. (1969) Covelline (klockmannite), chalcocite (acanthite, stromeyerite, bornite), fahlerz. Soviet Physics Crystallography, 13, 843847.Google Scholar
Biagioni, C., George, L.L., Cook, N.J., Makovicky, E., Moëlo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Welch, M.D. and Bosi, F. (2020) The tetrahedrite group: Nomenclature and classification. American Mineralogist, 105, 109122.CrossRefGoogle Scholar
Biagioni, C., Sejkora, J., Raber, T., Roth, P., Moëlo, Y., Dolníček, Z. and Pasero, M. (2021) Tennantite-(Hg), Cu6(Cu4Hg2)As4S13, a new tetrahedrite-group mineral from the Lengenbach quarry, Binn, Switzerland. Mineralogical Magazine, 85, 744751.CrossRefGoogle Scholar
Biagioni, C., Sejkora, J., Moëlo, Y., Marcoux, E., Mauro, D. and Dolníček, Z. (2022a) Tennantite-(Cu), Cu12As4S13, from Layo, Arequipa Department, Peru: a new addition to the tetrahedrite-group minerals. Mineralogical Magazine, 86, 331339.CrossRefGoogle Scholar
Biagioni, C., Kasatkin, A., Sejkora, J., Nestola, F. and Škoda, R. (2022b) Tennantite-(Cd), Cu6(Cu4Cd2)As4S13, from the Berenguela mining district, Bolivia: the first Cd-member of the tetrahedrite group. Mineralogical Magazine, 86, 834840.CrossRefGoogle Scholar
Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R. and Mills, S.J. (2019) On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627632.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Clark, L.A. and Kullerud, G. (1963) The sulfur-rich portion of the Fe-Ni-S system. Economic Geology, 58, 853885.CrossRefGoogle Scholar
Criddle, A.J. and Stanley, C.J. (1993) Quantitative Data File for Ore Minerals, 3rd Edition. Chapman & Hall, London.CrossRefGoogle Scholar
Des Cloizeaux, M. (1855) Notices Minéralogiques. Sur les formes cristallines de la Dufrénoysite. Les Annales des Mines, 5, 389398.Google Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2, A complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Ferenc, S., Uher, P., Spišiak, J. and Šimonová, V. (2016) Chromium-and nickel-rich micas and associated minerals in listvenite from the Muránska Zdychava, Slovakia: products of hydrothermal metasomatic transformation of ultrabasic rock. Journal of Geosciences, 61, 239254.CrossRefGoogle Scholar
Hatert, F. and Burke, E.A. (2008) The IMA–CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.CrossRefGoogle Scholar
Johnson, N.E., Craig, J.R. and Rimstidt, J.D. (1988) Crystal chemistry of tetrahedrite. American Mineralogist, 73, 389397.Google Scholar
Kharbish, S., Libowitzky, E. and Beran, A. (2007) The effect of As-Sb substitution in the Raman spectra of tetrahedrite-tennantite and pyrargyrite-proustite solid solutions. European Journal of Mineralogy, 19, 567574.CrossRefGoogle Scholar
Makovicky, E., Tippelt, G., Forcher, K., Lottermoser, W., Karup-Møller, S. and Amthauer, G. (2003). Mössbauer study of Fe-bearing synthetic tennantite. The Canadian Mineralogist, 41, 11251134.CrossRefGoogle Scholar
Makovicky, E., Karanović, L., Poleti, D., Balić-Žunić, T. and Paar, W.H. (2005) Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13. The Canadian Mineralogist, 43, 679688.CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Bali- Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nakamoto, K. (1997) Infrared and Raman spectra of inorganic and coordination compounds. Part A: Theory and applications in inorganic chemistry. 5th ed., Wiley-Interscience New York, 408 pp.Google Scholar
Nyman, H. and Hyde, B.G. (1981) The related structures of α-Mn, sodalite, Sb2Tl7, etc. Acta Crystallographica, A37, 1117.CrossRefGoogle Scholar
Pauling, L. and Neuman, E.W. (1934) The crystal structure of binnite (Cu,Fe)12As4S13 and the chemical composition and structure of minerals of the tetrahedrite group. Zeitschrift für Kristallographie, 88, 5462.CrossRefGoogle Scholar
Phillips, R. (1819) Analysis of the copper ore, described in the preceding paper. The Quarterly Journal of Science, Literature and the Arts, 7, 100102.Google Scholar
Phillips, W. (1819) Description of an ore of copper from Cornwall. The Quarterly Journal of Science, Literature and the Arts, 7, 95100.Google Scholar
Rigaku Oxford Diffraction (2021) CrysAlisPro Software system, version 1.171.41.96a. Rigaku Corporation.Google Scholar
Sack, R.O. and Ebel, D.S. (1993) As–Sb exchange energies in tetrahedrite-tennantite fahlores and bournonite-seligmannite solid solutions. Mineralogical Magazine, 57, 635642.CrossRefGoogle Scholar
Sejkora, J., Biagioni, C., Vrtiška, L. and Moëlo, Y. (2021) Zvěstovite-(Zn), Ag6(Ag4Zn2) As4S13, a new tetrahedrite-group mineral from Zvěstov, Czech Republic. Mineralogical Magazine, 85, 716724.CrossRefGoogle Scholar
Sejkora, J., Biagioni, C., Števko, M., Raber, T., Roth, P. and Vrtiška, L. (2022) Argentotetrahedrite-(Zn), Ag6(Cu4Zn2)Sb4S13, a new member of the tetrahedrite group. Mineralogical Magazine, 86, 319330.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) SHELXT–Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Wang, Y, Chen, R, Gu, X, Yang, Z, Hou, Z, Fan, G, Ye, L and Qu, K (2021) Tennantite-(Ni), IMA 2021-018. CNMNC Newsletter 62. Mineralogical Magazine, 62, 634638, https://doi.org/10.1180/mgm.2021.62.Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
Welch, M.D., Stanley, C.J., Spratt, J. and Mills, S.J. (2018) Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+,Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group. European Journal of Mineralogy, 30, 11631172.CrossRefGoogle Scholar
Wuensch, B.J., Takéuchi, Y. and Nowacki, W. (1966) Refinement of the crystal structure of binnite, Cu12As4S13. Zeitschrift für Kristallographie, 123, 120.CrossRefGoogle Scholar
Xiong, F.H., Yang, J.S., Robinson, P. T., Xu, X.Z., Liu, Z., Li, Y., Li, J.Y and Chen, S.Y. (2015) Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27, 525542.CrossRefGoogle Scholar
Yang, J.S., Bai, W.J., Fang, Q.S., Yan, B.G., Rong, H. and Chen, S.Y. (2004) Coesite discovered from the podiform chromitite in the Luobusa ophiolite, Tibet. Earth Science: Journal of China University of Geosciences, 29, 651660 [in Chinese with English abstract].Google Scholar
Zhang, L., Yang, J.S., Robinson, P.T., Xiong, F.H., Chen, Y.H., Lai, S.M. and Chen, M. (2015) Origin of listwanite in the Luobusa ophiolite, Tibet, implications for chromite stability in hydrothermal systems. Acta Geologica Sinica – English Edition, 89, 402417.Google Scholar
Zhou, M.F., Robinson, P.T., Malpas, J. and Li, Z. (1996) Podiform chromitites from the Luobusa ophiolite (southern Tibet): implications for melt–rock interaction and chromite segregation. Journal of Petrology, 37, 321.CrossRefGoogle Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material

Download Wang et al. supplementary material(File)
File 161.8 KB