Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:31:21.132Z Has data issue: false hasContentIssue false

A temperature-dependent structure study of gem-quality hibonite from Myanmar

Published online by Cambridge University Press:  05 July 2018

M. Nagashima*
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland Department of Earth Science, Graduate school of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan
T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
T. Hainschwang
Affiliation:
Laboratory for Gemstone Analysis and Reports, Gewerbestrasse 3, FL-9496 Balzers, Principality of Liechtenstein

Abstract

The structure of hibonite from Myanmar (space group P63/mmc, Z = 2, at room temperature a = 5.5909(1), c = 21.9893(4) Å), with simplified formula CaAl12O19 and composition (Ca0.99Na0.01)Σ1.00 was investigated between temperatures of 100 K and 923 K by single-crystal X-ray diffraction methods. Structure refinements have been performed at 100, 296, 473 and 923 K. In hibonite from Myanmar, Ti substitutes for Al mainly at the octahedral Al4 site and, to a lesser degree, at the trigonal bipyramidal site, Al2. The Al4 octahedra build face-sharing dimers. If Ti4+ substitutes at Al4, adjacent cations repulse each other for electrostatic reasons, leading to off-centre cation displacement associated with significant bond-length distortion compared to synthetic (Ti-free) CaAl12O19. Most Mg and smaller proportions of Zn and Si are assigned to the tetrahedral Al3 site. 12-coordinated Ca in hibonite replaces oxygen in a closest-packed layer. However, Ca is actually too small for this site and engages in a ‘rattling-type’ motion with increasing temperature. For this reason, Ca does not significantly increase thermal expansion coefficients of hibonite. The expansion of natural Ti,Mg-rich hibonite between 296 and 923 K along the x and the z axes is αa = 7.64×10–6 K–1 and αc = 11.19×10–6 K–1, respectively, and is thus very similar to isotypic, synthetic CaAl12O19 and LaMgAl11O19 (LMA).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, S.C., Marsh, P. and Brandle, C.D. (1987) Laser and phosphor host La1-x MgAl11+x O19 (x = 0.050): Crystal structure at 295 K. Journal of Chemical Physics, 86, 42214227.CrossRefGoogle Scholar
Aldebert, P. and Traverse, J.P. (1984) α-Al2O3, a high-temperature thermal expansion standard. High Temperatures High Pressures, 16, 127135.Google Scholar
Armbruster, T. and Geiger, C.A. (1993) Andradite crystal chemistry, dynamic X-site disorder and structural strain in silicate garnets. European Journal of Mineralogy, 5, 5971.CrossRefGoogle Scholar
Bastin, G.F., van Loo, F.J.J. and Heijlingers, H.J.M. (1984) Evaluation of the use of Gaussian ϕ(ρz) curves in quantitative electron probe microanalysis: a new optimization. X-ray Spectrometry, 13, 9197.CrossRefGoogle Scholar
Bastin, G.F., Heijlingers, H.J.M. and van Loo, F.J.J. (1986) A further improvement in the Gaussian ϕ(ρz) approach for matrix correction in quantitative electron probe microanalysis. Scanning, 8, 4567.CrossRefGoogle Scholar
Baur, H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Bermanec, V., Holtstam, D., Sturman, D., Criddle, A.J., Back, M.E. and Šavničar, S. (1996) Nežilovite, a new member of the magnetoplumbite group, and the crystal chemistry of magnetoplumbite and hibonite. The Canadian Mineralogist, 34, 12871297.Google Scholar
Bischoff, A., Keil, K. and Stöffler, D. (1985) Perovskite-hibonite-spinel-bearing inclusions and aluminium-rich chondorules and fragments in enstatite chon-drites. Chemie der Erde, 44, 97106.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica B41, 244247.CrossRefGoogle Scholar
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Büchel, G., Buhr, A., Gierisch, D. and Racher, R.P. (2005) Alkali-and CO-resistance of dense hexalu-minate Bonite. 48th; Internationales Feuerfest-Kolloquium, 2005, Aachen, pp. 208214.Google Scholar
Bürns, R.G. and Burns, V.M. (1984) Crystal chemistry of meteoritic hibonites. Proceedings of the Fifteenth Lunar and Planetary Science Conference, Part 1. Journal of Geophysical Research, 89, C313C321.Google Scholar
Cao, Z., Qin, S., Bi, Y. and Wang, I. (1997) The discovery and preliminary study of hibonite from Handa-Xingtai Area, Hebei Province. Acta Petrologica et Mineralogica 16, 353356 (Chinese with English abstract).Google Scholar
Collongues, R., Gourier, D., Kahn-Harari, A., Lejus, A.M., Thèry, J. and Vivien, D. (1990) Magnetoplumbite-related oxides. Annual Review of Materials Research, 20, 5182.CrossRefGoogle Scholar
Curien, H., Guillemin, C., Orcel, J. and Steinberg, M. (1956) La hibonite, norvelle espèce minérale. Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences 242, 28452847 (in French).Google Scholar
Fahey, A.J., Goswani, J.N., McKeegan, K.D. and Zinner, E. (1987) 26Al,244Pu, 50Ti, REE and trace element abundances in hibonite grains from CM and CV meteorites. Geochimica et Cosmochimica Acta, 51, 329350.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Graetsch, H. and Gebert, W. (1994) Positional and thermal disorder in the trigonal bipyramid of magnetoplumbite structure type SrGa12O19 . Zeitschrift für Kristallographie, 209, 338342.Google Scholar
Hainschwang, T., Notari, F., Massi, L., Armbruster, T., Rondeau, B., Fritsch, E. and Nagashima, M. (2010) Hibonite: A new gem mineral. Gems & Gemology, 46, 135138.CrossRefGoogle Scholar
Hazen, R.M. and Prewitt, C.T. (1977) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. American Mineralogist, 62, 309315.Google Scholar
Holtstam, D. (1996) Iron in hibonite: a spectroscopic study. Physics and Chemistry of Minerals, 23, 452460.CrossRefGoogle Scholar
Hummel, W., Hauser, J. and Bürgi, H.B. (1990) PEANUT: Computer graphics program to represent atomic displacement parameters. Journal of Molecular Graphics, 8, 214220.CrossRefGoogle ScholarPubMed
Iyi, N., Takekawa, S. and Kimura, S. (1989) Crystal chemistry of hexaaluminates: β-alumina and magnetoplumbite structures. Journal of Solid State Chemistry, 83, 819.CrossRefGoogle Scholar
Kato, K. and Saalfeld, H. (1968) Verfeinerung der Kristallstruktur von Ca0.6Al2O3 . Neues Jahrbuch für Mineralogie, Abhandlungen 109, 192200.Google Scholar
Keil, K. and Fuchs, L.H. (1971) Hibonite-bearing micro spherules: A new type of refractory inclusions with large isotopic anomalies. Geochimica et Cosmochimica Acta, 55, 367379.Google Scholar
Kimura, K., Ohgaki, M., Tanaka, K., Morikawa, H. and Marumo, F. (1990) Study of the bipyramidal site in magnetoplumbite-like compounds, SrMO19 (M = Al, Fe, Ga). Journal of Solid State Chemistry, 87, 186194.CrossRefGoogle Scholar
Kimura, M., El Goresy, A., Palme, H. and Zinner, E. (1993) Ca-Al-rich inclusions in the unique chondrite ALH 85085 – petrology, chemistry, and isotopic composition. Geochimica et Cosmochimica Acta, 57, 23292359.CrossRefGoogle Scholar
Kockegey-Lorenz, R., Buhr, A. and Racher, R.P. (2005) Industrial application experiences with microporous calcium hexaluminate insulating material SLA-92. 48th Internationales Feuerfest-Kolloquium, 2005, Aachen, pp. 6670.Google Scholar
Kohn, J.A. and Eckart, D.W. (1964) New hexagonal ferrite, establishing a second structural series. Journal of Applied Physics, 35, 968969.CrossRefGoogle Scholar
Kreber, E., Gonser, U. and Trautwein, A. (1975) Mössbauer measurements of the bipyramidal lattice site in BaFe12O19 . The Journal of Physics and Chemistry of Solids, 36, 263265.CrossRefGoogle Scholar
Kunz, M. and Armbruster, T. (1990) Difference displacement parameters in alkali feldspars: Effects of (Si,Al) order-disorder. American Mineralogist, 75, 141149.Google Scholar
Kuzmin, A.M. (1960) Högbomite from Gornaya Shoriya. Geologiya i Geofizika 4, 6375 (in Russian).Google Scholar
Liu, M.-C., McKeegan, K.D. and Davis, A.M. (2006) Magnesium isotopic compositions of CM hibonite grains. Lunar and Planetary Science XXXVII (Abstract, p. 2428).Google Scholar
Liu, M.-C., McKeegan, K.D., Davis, A.M. and Ireland, T.R. (2007) Magnesium-26 deficits in CM hibonite grains: Nucleosysthetic, galactic chemical evolution, or spallogenic? Lunar and Planetary Science XXXVIII (Abstract, p. 2253).Google Scholar
Liu, M.-C., Niftier, L.R., Alexander, C.M.O'D. and Lee, T. (2009) A search for internal 26Al isochrones in CM hibonite. 40th Lunar and Planetary Science Conference (Abstract, p. 1739).Google Scholar
Liu, M.-C., and McKeegan, K.D. (2009) On an irradiation origin for magnesium isotope anomalies in meteoritic hibonite. The Astrophysical Journal 697, L145L148.CrossRefGoogle Scholar
Ma, C. (2010) Hibonite-(Fe), (Fe,Mg)Al12O19, a new alteration mineral from the Allende meteorite. American Mineralogist, 95, 188191.CrossRefGoogle Scholar
Maaskant, P., Coolen, J.J.M. and Burke, E.A.J. (1980) Hibonite and coexisting zoisite and clinozoisite in a calc-silicate granulite from southern Tanzania. Mineralogical Magazine, 43, 9951003.CrossRefGoogle Scholar
Makide, K., Nagashima, K., Krot, A.N. and Huss, G.R. (2009) Oxygen isotopic compositions of solar, micrometer-sized corundum, hibonite and spinel grains in acid-resistant residues from ordinary and carbonaceous chondrites. 40th Lunar and Planetary Science Conference (Abstract, p. 2079).Google Scholar
Momma, K. and Izumi, F. (2008) VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Nakamura, T.M., Sugiura, N., Kimura, M., Miyazaki, A. and Krot, A.N. (2007) Condensation and aggregation of solar corundum and corundum-hibonite grains. Meteoritics and Planetary Science, 42, 12491265.CrossRefGoogle Scholar
Obradors, X., Collomb, A., Pernet, M., Samaras, D. and Joubert, J.C. (1985) X-ray analysis of the structural and dynamic properties of BaFe12O19 hexagonal ferrite at room temperature. Journal of Solid State Chemistry, 56, 171181.CrossRefGoogle Scholar
Packwood, R.H. and Brown, J.D. (1981) A Gaussian expression to describe ϕ(ρz) curves for quantitative electron probe microanalysis. X-ray Spectrometry, 10, 138146.CrossRefGoogle Scholar
Rakotondrazafy, M.A.F., Moine, B. and Cuney, M. (1996) Mode of formation of hibonite (CaAl12O19) within the U-Th skarns from the granulites of S-E Madagascar. Contributions to Mineralogy and Petrology, 123, 190201.CrossRefGoogle Scholar
Russell, S.S., Huss, G.R., Fahey, A.J., Greenwood, R.C., Hutchison, R. and Wasserburg, G.J. (1998) An isotopie and petrologie study of calcium-aluminum-rich inclusions from CO3 meteorites. Geochimica et Cosmochimica Acta, 62, 689714.CrossRefGoogle Scholar
Sánchez-Herencia, A.J., Moreno, R. and Baudin, C. (2000) Fracture behaviour of alumina-calcium hexaluminate composites obtained by colloidal processing. Journal of the European Ceramic Society, 20, 25752583.CrossRefGoogle Scholar
Sandiford, M. and Santosh, M. (1991) A granulite facies kalsilite-leucite-hibonite association from Punalur, Southern India. Mineralogy and Petrology, 43, 2252360.CrossRefGoogle Scholar
Santosh, M., Sandiford, M. and Reed, S.J.B. (1991) Zoned hibonites from Punalur, South India. Mineralogical Magazine, 55, 159162.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS. University of Gottingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112122.CrossRefGoogle Scholar
Simon, S.B., Grossman, L., Hutcheon, I.D., Phinney, D.L., Weber, P.K. and Fallon, S.J. (2006) Formation of spinel-, hibonite-rich inclusions found in CM2 carbonaceous chondrites. American Mineralogist, 91, 16751687.CrossRefGoogle Scholar
Stroud, R.M., Niftier, L.R. and Alexander, C.M.O'D. (2008) Transmission electron microscopy of a presolar supernova hibonite grain. Lunar and Planetary Science XXXIX (Abstract, p. 1778).Google Scholar
Trueblood, K.N. (1978) Analysis of molecular motion with allowance for intramolecular torsion. Acta Crystallographica, A34, 950954.CrossRefGoogle Scholar
Ulianov, A. and Kalt, A. (2006) Mg-Al sapphirine-and Ca-Al hibonite-bearing granulite xenoliths from the Chyulu Hills volcanic field, Kenya. Journal of Petrology, 47, 901927.CrossRefGoogle Scholar
Ulianov, A., Kalt, A. and Pettke, T. (2005) Hibonite, Ca(Al,Cr,Ti,Si,Mg,Fe2+)12O19, in granulite xenoliths from the Chyulu Hills volcanic field, Kenya. European Journal of Mineralogy, 17, 357366.CrossRefGoogle Scholar
Utsunomiya, A., Tanaka, K., Morikawa, H., Marumo, F. and Kojima, H. (1988) Structure refinement of CaO-6Al2O3 . Journal of Solid State Chemistry, 75, 197200.CrossRefGoogle Scholar
Yakovlevskaya, T.A. (1961) Hibonite from Gornaya Shoria. Zapiski Vsesoyuzngo Mineralogischekogo Obshchestava 90, 458461 (in Russian).Google Scholar