Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T14:58:59.607Z Has data issue: false hasContentIssue false

Redefinition of coquimbite, AlFe3+3(SO4)6(H2O)12⋅6H2O

Published online by Cambridge University Press:  02 March 2020

Daniela Mauro*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126Pisa, Italy
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126Pisa, Italy
Marco Pasero
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126Pisa, Italy
Henrik Skogby
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405Stockholm, Sweden
Federica Zaccarini
Affiliation:
Department of Applied Geological Sciences and Geophysics, University of Leoben, Peter Tunner Str. 5, A-8700Leoben, Austria
*
*Author for correspondence: Daniela Mauro, Email: daniela.mauro@dst.unipi.it

Abstract

Coquimbite, AlFe3+3(SO4)6(H2O)12⋅6H2O, was considered as a pure Fe3+ hydrated sulfate. However, previous mineralogical studies pointed out the occurrence of essential Al, occupying a distinct site in the crystal structure of this mineral. Through the critical re-examination of the available literature and new crystal-chemical data collected on a specimen from the Monte Arsiccio mine, Apuan Alps, Tuscany, Italy, the chemical formula of coquimbite has been revised, taking into account the occurrence of Al. Coquimbite has a homeotypic relationship with paracoquimbite, Fe4(SO4)6(H2O)12⋅6H2O; both mineral species belong to the coquimbite group. On the contrary, aluminocoquimbite, Al2Fe2(SO4)6(H2O)12⋅6H2O, has a different topology and does not belong to that group.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: František Laufek

References

Ackermann, S., Armbruster, T., Lazic, B., Doyle, S., Grevel, K.-D. and Majzlan, J. (2009) Thermodynamic and crystallographic properties of kornelite (Fe2(SO4)3⋅~7.75H2O) and paracoquimbite (Fe2(SO4)3⋅9H2O). American Mineralogist, 94, 16201628.10.2138/am.2009.3179CrossRefGoogle Scholar
Arzruni, A. (1879) Ueber den Coquimbit. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 3, 516524.Google Scholar
Bandy, M.C. (1938) Mineralogy of three sulphate deposits of northern Chile. American Mineralogist, 23, 669760.Google Scholar
Biagioni, C., Bonaccorsi, E. and Orlandi, P. (2011) Volaschioite, Fe3+4(SO4)O2(OH)6⋅2H2O, a new mineral species from Fornovolasco, Apuan Alps, Tuscany, Italy. The Canadian Mineralogist, 49, 605614.CrossRefGoogle Scholar
Biagioni, C., Bindi, L., Mauro, D. and Hålenius, U. (2019) Crystal chemistry of sulfates from the Apuan Alps (Tuscany, Italy). V. Scordariite, K8(Fe3+0.670.33)[Fe3+3O(SO4)6(H2O)3]2(H2O)11: a new metavoltine-related mineral. Minerals, 9, 702.10.3390/min9110702CrossRefGoogle Scholar
Breithaupt, J.F.A. (1841) Coquimbites ferricus kürzer Coquimbit. Pp. 100 in: Vollständiges Handbuch der Mineralogie. Volume 2. Arnoldische Buchhandlung, Dresden and Leipzig, Germany.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Bruker AXS Inc. (2016) APEX 3. Bruker Advanced X-ray Solutions, Madison, Wisconsin, USA.Google Scholar
Cesbron, F. (1964) Contribution à la Minéralogie des sulfates de fer hydratés. Bulletin de la Société Française de Mineralogie, 87, 125143.Google Scholar
Collins, H.F. (1923) On some crystallized sulphates from the province of Huelva, Spain. Mineralogical Magazine, 20, 3238.Google Scholar
Demartin, F., Castellano, C., Gramaccioli, C.M. and Campostrini, I. (2010a) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals. The Canadian Mineralogist, 48, 323333.Google Scholar
Demartin, F., Castellano, C., Gramaccioli, C.M. and Campostrini, I. (2010b) Aluminocoquimbite, AlFe(SO4)3⋅9H2O, a new aluminum iron sulfate from Grotta dell'Allume, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 14651468.Google Scholar
Fanfani, I., Nunzi, A. and Zanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751757.Google Scholar
Fang, J.H. and Robinson, P.D. (1970) Crystal structures and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite. American Mineralogist, 55, 15341540.Google Scholar
Fang, J.H. and Robinson, P.D. (1974) Polytypism in coquimbite and paracoquimbite. Neues Jahrbuch für Mineralogie, Monatshefte, 1974, 8991.Google Scholar
Fernandez-Martinez, A., Timon, V., Roman-Ross, G., Cuello, G.J., Daniels, J.E. and Ayora, C. (2010) The structure of schwertmannite, a nanocrystalline iron oxyhydroxysulfate. American Mineralogist, 95, 13121322.CrossRefGoogle Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O⋅⋅⋅O hydrogen bonds. Acta Crystallographica, B44, 341344.CrossRefGoogle Scholar
Frost, R.L., Žigovečki Gobac, Ž., López, A., Xi, Y., Scholz, R., Lana, C. and Fernandes Lima, R.M. (2014) Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru – Using infrared, Raman spectroscopy and thermogravimetry. Journal of Molecular Structure, 1063, 251258.Google Scholar
Giacovazzo, C., Menchetti, S. and Scordari, F. (1970) The crystal structure of coquimbite. Atti della Accademia Nazionale dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, 49, 129140.Google Scholar
Giester, G. and Miletich, R. (1995) Crystal structure and thermal decomposition of the coquimbite-type compound Fe2(SeO4)3⋅9H2O. Neues Jahrbuch für Mineralogie, Monatshefte, 1995, 211223.Google Scholar
Jambor, J.L., Nordstrom, D.K. and Alpers, C.N. (2000) Metal-sulfate salts from sulfide mineral oxidation. Pp. 303350 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L., and Nordstrom, D.K, editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Lausen, C. (1928) Hydrous sulphates formed under fumerolic conditions at the United Verde mine. American Mineralogist, 13, 203229.Google Scholar
Linck, G. (1889) Beitrag zur Kenntniss der Sulfate von Tierra amarilla bei Copiapó in Chile. Zeitschrift für Kristallographie und Mineralogie, 15, 128.CrossRefGoogle Scholar
Majzlan, J. and Kiefer, B. (2006) An X-ray and neutron-diffraction study of synthetic ferricopiapite, Fe14/3(SO4)6(OD,OH)2(D2O,H2O)20, and ab initio calculations on the structure of magnesiocopiapite, MgFe4(SO4)6(OH)2(H2O)20. The Canadian Mineralogist, 44, 12271237.CrossRefGoogle Scholar
Majzlan, J., Botez, C. and Stephens, P.W. (2005) The crystal structures of synthetic Fe2(SO4)3(H2O)5 and the type specimen of lausenite. American Mineralogist, 90, 411416.Google Scholar
Majzlan, J., Navrotsky, A., McCleskey, R.B. and Alpers, C.N. (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. European Journal of Mineralogy, 18, 175186.10.1127/0935-1221/2006/0018-0175CrossRefGoogle Scholar
Majzlan, J., Dordević, T., Kolitsch, U. and Schefer, J. (2010) Hydrogen bonding in coquimbite, nominally Fe2(SO4)3⋅9H2O, and the relationship between coquimbite and paracoquimbite. Mineralogy and Petrology, 100, 241248.CrossRefGoogle Scholar
Majzlan, J., Dachs, E., Benisek, A., Plášil, J. and Sejkora, J. (2018) Thermodynamics, crystal chemistry and structural complexity of the Fe(SO4)(OH)(H2O)x phases: Fe(SO4)(OH), metahohmannite, butlerite, parabutlerite, amarantite, hohmannite, and fibroferrite. European Journal of Mineralogy, 30, 259275.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2019) New minerals and nomenclature modifications approved in 2019. IMA Commission on New Minerals, Nomenclature and Classification (CNMNC), Newsletter 52. Mineralogical Magazine, 83, 887893.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892. 7th edition, Vol. II. John Wiley and Sons Inc., New York [pp. 532534].Google Scholar
Pasero, M. (2019) The New IMA List of Minerals. http://cnmnc.main.jp/ [accessed May 2019].Google Scholar
Peterson, R.C., Valyashko, E. and Wang, R. (2009) The atomic structure of (H3O)Fe3+(SO4)2 and rhomboclase, (H5O2)Fe3+(SO4)2⋅2H2O. The Canadian Mineralogist, 47, 625634.CrossRefGoogle Scholar
Plášil, J., Škoda, R., Fejfarová, K., Čejka, J., Kasatkin, A.V., Dušek, M., Talla, D., Lapčák, L., Machovič, V. and Dini, M. (2014) Hydroniumjarosite, (H3O)+Fe3(SO4)2(OH)6, from Cerros Pintados, Chile: Single-crystal X-ray diffraction and vibrational spectroscopic study. Mineralogical Magazine, 78, 535547.Google Scholar
Robinson, P.D. and Fang, J.H. (1971) Crystal structures and mineral chemistry of hydrated ferric sulphates: II. The crystal structure of paracoquimbite. American Mineralogist, 56, 15671572.Google Scholar
Robinson, P.D. and Fang, J.H. (1973) Crystal structures and mineral chemistry of hydrated ferric sulphates. III. The crystal structure of kornelite. American Mineralogist, 58, 535539.Google Scholar
Rose, H. (1833) Ueber einige in Südamerika vorkommende Eisenoxydsalze. Annalen der Physik und Chemie, 27, 309319.10.1002/andp.18331030209CrossRefGoogle Scholar
Scharizer, R. (1927) XXI. Beitrage zur Kenntnis der chemischen Konstitution und der Genese der natürlichen Ferrisulfate. Zeitschrift für Kristallographie und Mineralogie, 65, 335360.Google Scholar
Scordari, F., Ventruti, G. and Gualtieri, A. (2004) The structure of metahohmannite, Fe3+2[O(SO4)2]⋅4H2O, by in situ synchrotron powder diffraction. American Mineralogist, 89, 365370.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google ScholarPubMed
Susse, P. (1968) The crystal structure of amarantite, Fe2(SO4)2O⋅7H2O. Zeitschrift für Kristallographie, 127, 261275.CrossRefGoogle Scholar
Thomas, J.N., Robinson, P.D. and Fang, J.H. (1974) Crystal structures and mineral chemistry of hydrated ferric sulfates. IV. The crystal structure of quenstedtite. American Mineralogist, 59, 582586.Google Scholar
Ungemach, H. (1933) Sur quelques minéraux nouveaux. Comptes Rendus de l'Académie des Sciences de Paris, 197, 11321134.Google Scholar
Ungemach, H. (1935) Sur certains minéraux sulfatés du Chili. Bulletin de la Société Française de Mineralogie, 58, 97221.10.3406/bulmi.1935.4369CrossRefGoogle Scholar
Ventruti, G., Della Ventura, G., Orlando, R. and Scordari, F. (2015) Structure refinement, hydrogen-bond system and vibrational spectroscopy of hohmannite, Fe3+2[O(SO4)2]⋅8H2O. Mineralogical Magazine, 79, 1124.CrossRefGoogle Scholar
Ventruti, G., Della Ventura, G., Bellatreccia, F., Lacalamita, M. and Schingaro, E. (2016) Hydrogen bond system and vibrational spectroscopy of the iron sulfate fibroferrite, Fe(OH)SO4⋅5H2O. European Journal of Mineralogy, 28, 943952.CrossRefGoogle Scholar
Ventruti, G., Della Ventura, G., Lacalamita, M., Sbroscia, M., Sodo, A., Plaisier, J.R., Cinque, G. and Schingaro, E. (2019) Crystal-chemistry and vibrational spectroscopy of ferrinatrite, Na3[Fe(SO4)3]⋅3H2O, and its high-temperature decomposition. Physics and Chemistry of Minerals, 46, 119131.10.1007/s00269-018-0991-9CrossRefGoogle Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography. Volume C. Kluwer, Dordrecht, Germany.Google Scholar
Yang, Z. and Giester, G. (2018) Structure refinements of coquimbite and paracoquimbite from the Hongshan Cu-Au deposit, NW China. European Journal of Mineralogy, 30, 849858.Google Scholar
Yang, Z. and Giester, G. (2019) Structure refinement and hydrogen bonding of ferrinatrite, Na3Fe(SO4)3⋅3H2O. Mineralogy and Petrology, 113, 555562.CrossRefGoogle Scholar
Supplementary material: File

Mauro et al. supplementary material

Mauro et al. supplementary material

Download Mauro et al. supplementary material(File)
File 624.3 KB