Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:55:29.893Z Has data issue: false hasContentIssue false

Quantitative high-resolution cathodoluminescence spectroscopy of smithsonite

Published online by Cambridge University Press:  05 July 2018

T. Götte
Affiliation:
Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
D. K. Richter
Affiliation:
Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany

Abstract

Five smithsonite samples from locations in Germany, Mexico and Namibia have been investigated with cathodoluminescence (CL) spectroscopy and trace-element analyses. As with other carbonates, the CL properties of smithsonite are mainly controlled by Mn2+- and Fe2+-incorporation, because these elements are the most important activator and quencher species, respectively. Additional trace elements may have either a quenching effect (Cu) or have only small or no influence (Ca, Pb). A linear correlation exists between the Mn content and the intensity of the Mn-emission band in smithsonite, which can be quantified, if the Cl intensity is related to the number of moles of Mn rather than the weight fraction. A correlation between the Cl intensity and the Mn concentration, which is valid for all trigonal carbonates, is obtained from the published results of calcite, dolomite and smithsonite. Matrix effects due to the different chemical composition of the carbonate minerals seem to be of lesser importance.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amieux, P. (1982) La cathodoluminescence: méthode d’étude sédimentologique des carbonates. Bulletin des Recherches Exploration-Producti on Elf- Aquitaine, 6, 437483.Google Scholar
Effenberger, H., Mereiter, K. and Zemann, J. (1981) Crystal structure re. nements of magnesite, calcite, rhodochrosite, siderite, smithsonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie, 156, 233243.Google Scholar
Gillhaus, A., Richter, D.K., Meijer, J., Neuser, R.D. and Stephan, A. (2001) Quantitative high resolution cathodoluminescence spectroscopy of diagenetic and hydrothermal dolomites. Sedimentary Geology, 140, 191199.CrossRefGoogle Scholar
Gorobets, B.S. and Rogojine, A.A. (2001) Luminescence spectra of minerals: Reference book. All-Russia Institute of Mineral Resources, Moscow.Google Scholar
Habermann, D., Neuser, R.D., Richter, D.K. (1998) Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art. Sedimentary Geology, 116, 1324.CrossRefGoogle Scholar
Habermann, D., Götze, J., Neuser, R.D. and Richter, D.K. (1999 a) The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite. Zentralblatt für Geologie und Paläontologie Teil I, 1997, 12751284.Google Scholar
Habermann, D., Meijer, J., Neuser, R.D., Richter, D.K., Rolfs, C. and Stephan, A. (1999 b) Micro-PIXE and quantitative cathodoluminesce nce spectroscopy: combined high resolution trace element analyses in minerals. Nuclear Instruments and Methods in Physics Research, B150, 470477.CrossRefGoogle Scholar
Habermann, D., Neuser, R.D. and Richter, D.K. (2000) Quantitative high resolution spectral analysis in sedimentary calcite. 331358 in : Cathodoluminescence in Geosciences (Pagel, M., Barbin, V., Blanc, P. and Ohnenstetter, D., editors). Springer, Berlin.CrossRefGoogle Scholar
Machel, H.G., Mason, R.A., Mariano, A.N. and Mucci, A. (1991) Causes and measurements of luminescence in calcite and dolomite. 925 in: Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. SEPM Short Course, 25 (Barker, C.E. and Kopp, O.C., editors).Google Scholar
Marfunin, A.S. (1979) Spectroscopy, Luminescence and Radiation Centres in Minerals. Springer, Berlin.CrossRefGoogle Scholar
Marshall, J.D. (1988) Cathodolumine scence of Geological Materials. Unwin Hyman, Boston.Google Scholar
Maxwell, J.A., Teesdale, V.J. and Campbell, J.L. (1995) The Guelph PIXE software package II. Nuclear Instruments and Methods in Physics Research, B95, 407421.CrossRefGoogle Scholar
Meijer, J., Stephan, A., Adamczewski, J., Bukow, H.H., Rolfs, C., Pickart, T., Bruhn, F. and Veizer, J. (1994) PIXE microprobe for geoscience application. Nuclear Instruments and Methods in Physics Research, B89, 229232.CrossRefGoogle Scholar
Neuser, R.D., Bruhn, F., Götze, J., Habermann, D. and Richt er, D.K. (1996) Kathodolumine szenz : Methodik und Anwendung. Zentralb latt für Geologie und Paläontologie Teil I, 1995, 287306.Google Scholar
Richter, D.K., Götte, Th., Götze, J. and Neuser, R.D. (2003): Progress and application of cathodoluminescence in sedimentary petrology. Mineralogy and Petrology(in press).CrossRefGoogle Scholar
Wedepohl, K.H. (1978) Handbook of Geochemistry, Vol. II/3. Springer, Berlin.Google Scholar