Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T00:29:10.230Z Has data issue: false hasContentIssue false

Pyrochlore from Weathered Carbonatite at Lueshe, Zaire

Published online by Cambridge University Press:  05 July 2018

F. Wall
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
C. T. Williams
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
A. R. Woolley
Affiliation:
Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
M. Nasraoui
Affiliation:
Département de Géochimie, Ecole des Mines de St Etienne, 158, Cours Fauriel 42100, St. Etienne, France

Abstract

A detailed study of weathered pyrochlore in the laterite above carbonatite at Lueshe, NE Zaire, has been made in order to determine its chemical and textural variations. Pyrochlore in fresh carbonatite at Lueshe is close to an ideal formula of (Ca,Na)2Nb2O6(OH,F) (where a general formula is A2−xB2O6(OH,F)1−y·zH2O. The first and principal change on weathering occurs at the base of the profile and involves the leaching and partial exchange of A cations together with hydration. This change appears common to weathered pyrochlore worldwide. As a result weathered pyrochlore at Lueshe has a large apparent A cation deficiency with A totals between 0.25 and 0.59. The B cations remain stable. Abundant kalipyrochlore is unique to Lueshe and is thought to be related to the abundance of potassium feldspar in the fresh carbonatite, showing that the actual composition of weathered pyrochlore is a characteristic of a particular deposit. Weathered profiles at Lueshe are not simple trends from the least to most leached compositions. Further factors including variation in whole rock mineralogy and chemistry, and cation exchange and uptake are responsible for local concentrations of strontio-, bario- and calcium-rich, sodium-poor pyrochlore in the ore body, as well as rims of ceriopyrochlore on kalipyrochlore. The most important textural relationship in the Lueshe pyrochlore is the intimate intergrowth with crandallite in the most weathered parts of the laterite. Although pyrochlore persists throughout the weathering profile, niobium-beating goethite is thought to represent the final product of pyrochlore breakdown.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albers, K.-H., Alegria, B., Meixner, K.-T., Schuermann, B., Philippo, S., Naud, J., Verkaeren, J., Nasraoui, M., Bilal, E., Gracia, D., Gruffat, J.J., Guy, B., Moutte, J., Wall, F., Williams, C.T. and Woolley, A.R. (1994) Applied mineralogy of pyrochlore and related minerals in the weathering zones of the niobium deposits of the Lueshe and the Bingo carbonatites, Zaire. Final Report to European Commission. EC Contract No: MA2M-CT90-0038. Unpublished. 138 pp.Google Scholar
Bellon, H. and Pouclet, A. (1980) Datations K-Ar de quelques laves du Rift-ouest de TAfrique Centrale: implications sur revolution magmatique et structur- ale. Geologische Rundschau, 69, 4962.CrossRefGoogle Scholar
Clark, A.M. (1993) Hey's Mineral Index. Chapman and Hall, London. 852pp.Google Scholar
Chelishev, N.F. and Mar'ina N.A. (1972) The ion exchange properties of pyrochlore under super Critical conditions. Doklady of the Academy of Sciences U.S.S.R. Earth Sciences Section 197, 123—5. (Translated from O ionoobmennykh svoyst- vakh pirokhlora v nadkriticheskikh usloviyakh. Doklady Akademii Nauk SSSR, 1971, 197, 682—5.)Google Scholar
Entin, A.R., Yeremenko, G.Y. and Tyan, O.A. (1993) Stages of alteration of primary pyrochlores. Transactions (Dokaldy) of the U.S.S.R. Academy of Sciences: Earth Science Sections, 320, 1991, 236—9. (Translated from O stadiynosti izmeneniya pervich- nykh pirokhlorov. Doklady Akademii Nauk SSSR, 1991, 319, 1218-21.)Google Scholar
Ercit, T.S., Hawthorne, F.C. and Cem##, P. (1994) The structural chemistry of kalipyrochlore, a "hydropyrochlore". Canad. Mineral, 32, 415–20.Google Scholar
Fleischer, M. and Mandai'ino, J.A. (1991) Glossary of Mineral Species 199]. The Mineralogical Record Inc, Tucson. 256 pp.Google Scholar
Hogarth, D.D. (1977) Classification and nomenclature of the pyrochlore group. Amer. Mineral., 62, 403 -10.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphi- bole: distinctive minerals in carbonatite. In Carbonatites(Bell, K. ed.) Chapman and Hall, London. 105—48.Google Scholar
Issa Filho, A., morin dos Santos Lima, P.R. and Moreira de Souza, O. (1984) Aspects of the geology of the Barreiro Carbonatitic Complex, Araxa, MG, Brazil. In Carbonatitic complexes of Brazil: geology. CBMM, Department of Geology, Sao Paulo. 44 pp.Google Scholar
Jüger, E., Niggli, E. and van der Veen, A.H. (1959) A hydrated barium-strontium pyrochlore in a biotite rock from Panda Hill, Tanganyika. Mineral. Mag., 32, 1025.Google Scholar
Jambor, J.L., Bladh, K.W. Ercit, T.S., Grice, J.D. and Grew, E.S. (1988) New mineral names. Amer. Mineral, 73, 927—35.Google Scholar
Lapin, A.V. (1992) Carbonatite Weathering Crusts: Geochemical Types and Mineralization. Geochemistry International, 29, 72—83.Google Scholar
Lapin, A.V. and I.M., Kulikova (1989) Alteration processes in pyrochlore and their products in weathering crusts of carbonatites. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 118, 4149. (in Russian) Google Scholar
Lapin, A.V., Malyshev, A.A., Ploshko, V.V. and Cherepivskaya, G.Ye. (1988) Strontiopyrochlore from lateritic weathered mantle of carbonatite. Transactions (Doklady) of the U.S.S.R.. Academy of Sciences: Earth Science Sections, 290, 188192. (Translated from Strontsiopirokhlor iz lateritnykh kor vyvetrivaniya karbonatittov. Doklady Akademii—, 986, 290, 1212-7).Google Scholar
Laval, M., Johan, V. and Tourliere, B., (1988) La carbonatite de Mabounie: exemple de formation d’un gite residuel a pyrochlore. Chron. Rech. Min., 491, 125–36.Google Scholar
Lottermoser, B.G. and B.M. England. (1988) Compositional variation in pyrochlores from the Mt Weld Carbonatite laterite, Western Australia. Mineral Petrol., 38, 3751.CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: Pyrochlore subgroup. Amer. Mineral, 80, 732–43.CrossRefGoogle Scholar
Maravic, H.v. and Morteani, G. (1980) Petrology and geochemistry of the carbonatite and syenite complex of Lueshe (N.E. Zaire). Lithos, 13, 159–70.CrossRefGoogle Scholar
Maravic, H.v., Morteani, G. and Roelhe, G. (1989) The cancrinite-syenite/carbonatite complex of Lueshe, Kivu/NE-Zaire: petrographic and geochemical studies and its economic significance. J. African Earth Sci., 9, 341–55.CrossRefGoogle Scholar
Meyer, A. (1958) La Carbonatite Lueshe (Kivu). Congo Beige, 4e Direction Generate, Service GeologiqueBulletin no. 8- Fasc. 5.8 pp.Google Scholar
Nickel, E.H. and Nichols, M.C. (1991) Mineral Reference Manual Von Nostrand Reinhold, New York. 250 pp.CrossRefGoogle Scholar
van der Veen, A.H. (1963) A study of pyrochlore. Druk Van J.J. Groen & Zn. N.V., Leiden. 188 pp.Google Scholar
Van Wambeke, L. (1965) A study of some niobiumbearing minerals of the Lueshe carbonatite deposit (Kivu, Republic of Congo). Report of European Atomic Energy CommunityEuratom.EUR 2110.e, l-30Google Scholar
Van Wambeke, L. (1971) Pandaite, baddeleyite and associated minerals from the Bingo niobium deposit, Kivu, Democratic Republic of Congo. Mineralium Deposita, 6, 153—5.Google Scholar
Van Wambeke, L. (1978) Kalipyrochlore, a new mineral of the pyrochlore group. Amer. Mineral., 63, 528–30.Google Scholar