Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T23:33:15.388Z Has data issue: false hasContentIssue false

Primary zoning in pyrochlore group minerals from carbonatites

Published online by Cambridge University Press:  05 July 2018

D. D. Hogarth
Affiliation:
Department of Earth Sciences, University of Ottawa, Ottawa, Canada K1N 6N5
C. T. Williams*
Affiliation:
Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
P. Jones
Affiliation:
Department of Earth Sciences, Carleton University, Ottawa, Canada K1S 5B6
*
*E-mail: ctw@nhm.ac.uk

Abstract

Pyrochlore group minerals have the general formula A16–xB16O48Z8–y·nH2O, with A mainly Na, Ca, Sr, REE, Th, U; B mainly Nb, Ta, Ti and Z being O, F, OH. In this study, pyrochlore specimens were examined from carbonatites at Argor, Carillon Dam, Chilwa Island, Fen, Lueshe, Oka, Mbeya, Meech Lake and Verity. Primary features include a background with little compositional variation, from core to rim, upon which are commonly superimposed narrow oscillatory zones, parallel to {111}. These zones are usually characterized by high Ta, in many cases coupled with U (here Argor, Meech Lake and Verity specimens), but Chilwa Island and Fen pyrochlores have little Ta and zonation is mainly by enrichment in Ce and Nb. Primary zonation may persist through high-temperature metamorphism (Meech Lake and Verity) and metamictization (Meech Lake). Oscillatory zones were generated by a disequilibrium system that cooled under tranquil conditions, signalling absence of magma turbulence and, in many cases, the end of crystal growth. Some fresh crystals (Oka, Fen) have no oscillatory zones, possibly the product of magma turbulence in space or time. Low-temperature effects may mimic those of primary high temperature and are especially characterized by replacement rims, pyrochlore-inpyrochlore veinlets and low A-ion totals (Carillon Dam, Lueshe, Myeba).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagdasarov, Yu.A. (1972) Application of nuclear-physical methods to the study of rock, ore and mineral samples. Spatial distribution of uranium and thorium in pyrochlore crystals from carbonatites. Trudy Vsesoyuznyi Nauchno-Issledovatel'skii Institut Yadernoi Geofiziki i Geokhimii, 13, 60–5 (in Russian).Google Scholar
Bagdasarov, Yu. A. (1974) Types of tantalum-niobium ores and some characteristics of their distribution in carbonatites as illustrated by a massif of alkalineultrabasic rocks and carbonatites in Siberia. Geologiya Rudnydh Mestorozhdenii, 16, 1524 (in Russian).Google Scholar
Barker, W.W., White, P.S. and Knop, O. (1976) Pyrochlores. X, Madelung energies of pyrochlores and defect fluorites. Canad. J. Chem., 54, 2316–34.CrossRefGoogle Scholar
Barth, T.F.W. and Ramberg, I.B. (1966) The Fen circular complex. Pp. 225–57 in: Carbonatites (Tuttle, O.F. and Gittins, J., editors). Wiley Interscience, New York.Google Scholar
Chakoumakos, B.C. (1984) Systematics of the pyrochlore structure type, ideal A2B2X6Y. J. Solid State Chem., 53, 120–9.CrossRefGoogle Scholar
Chistov, L.B. and Denisov, A.F. (1971) Compositionally zoned pyrochlore crystals from carbonatite. Nauchnye Trudy Gosudarstvenny i Nauchno-Issledovatel'skii Proektnyi Institut Redko-Metallicheskoi Promyshlennosti, 25, 102–7 (in Russian).Google Scholar
Fauquier, D. (1959) Étude préliminaire d’un cristal de pyrochlore à croissance zonaire, provenant des pegmatites de Madagascar. Comptes Rendus du Congrès des Sociétés Savantes de Paris et des Départements. Section des Sciences, 84, 303–8.Google Scholar
Gittins, J. (1966) Summaries and bibliographies of carbonatite complexes. Pp. 417570 in: Carbonatites (Tuttle, O.F. and Gittins, J., editors). Wiley Interescience, New York.Google Scholar
Gold, D.P. (1972) The Monteregian Hills: ultra-alkaline rocks and the Oka carbonatite complex. Int. Geol. Cong., 24th Session [Montreal ], Guidebook, Excursion B11.Google Scholar
Hayakawa, I. and Kamizono, H. (1993) Durability of La2Zr2O7 waste form containing various amounts of simulated HLW elements. J. Nucl. Mater., 202, 163–8.CrossRefGoogle Scholar
Hodgson, N.A. and Le Bas, M.J. (1992) The geochemistry and cryptic zonation of pyrochlore from San Vicente, Cape Verde Islands. Mineral. Mag., 56, 201–14.CrossRefGoogle Scholar
Hogarth, D. D. (1977) Classification and nomenclature of the pyrochlore group. Amer. Mineral., 62, 403–10.Google Scholar
Hogarth, D.D. (1989) Pyrochlore, apatite and amphibole: distinctive minerals in carbonatite. Pp. 105–48 in: Carbonatites. Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Hogarth, D.D. (1997) Carbonatites, fenites and associated phenomena near Ottawa. Geol. Assoc. Canada, Mineral. Assoc. Canada, Joint Annual Meeting, Ottawa. Guidebook to Excursion A4.Google Scholar
Hogarth, D.D. and Horne, J.E.T. (1989) Non-metamict uranoan pyrochlore and uranpyrochlore from tuff near Ndale, Fort Portal area, Uganda. Mineral. Mag., 53, 257–62.CrossRefGoogle Scholar
Kalogeropoulos, S.I. (1977) Geochemistry and mineralogy of the St. Lawrence pyrochlore deposit, Oka, P.Q. MSc thesis, Queen's Univ., Kingston, Ontario.Google Scholar
Kapustin, Yu.L. (1973) Mineralogy of Carbonatite Weathering Crusts. Nedra, Moscow (in Russian).Google Scholar
Knudsen, C. (1989) Pyrochlore group minerals from the Qaqarssuk carbonatite complex. Pp. 8099 in: Lanthanides, Tantalum and Niobium (Möller, P. Černý, P. and Saupé, F., editors). Springer-Verlag, Berlin and Heidelberg.CrossRefGoogle Scholar
Kukharenko, A.A. (1965) The pyrochlore group. Pp. 345–62 in: Kaledonskii Kompleks ultraosnovykh, shchelochnykh porod i karbonatitov Kol'skogo Poluostrova i severnoi Karelii (Kukharenko, A.A., editor). Nedra, Moscow (in Russian).Google Scholar
Lapin, A.V. and Kulikova, I.M. (1989) Processes of modification of pyrochlore and its products in weathered crusts of carbonatites. Zap. Vses. Mineral. Obshch., 118, 41–9 (in Russian).Google Scholar
Lebedeva, S.I., Bytov, V.P., Dubakina, L.S. and Yurkina, K.V. (1973) Microprobe determination of the mode of deposition of trace elements in zirconbearing pyrochlores and hatchettolites. Pp. 133–45 in: Issledovaniya v Oblasti Rudnoi Mineralogii (Bezsmertnaya, M.S., editor). Nauka, Moscow (in Russian).Google Scholar
Lindqvist, K. and Rehtijärvi, P. (1979) Pyrochlore from the Sokli carbonatite complex, northern Finland. Bull. Geol. Soc. Finland, 51, 8193.CrossRefGoogle Scholar
Lottermoser, B.G. and England, B.M. (1988) Compositional variation in pyrochlores from the Mt. Weld carbonatite laterite, Western Australia. Mineral. Petrol., 88, 37–51.CrossRefGoogle Scholar
Lumpkin, G.R. (1989) Alpha-decay damage, geochemical alteration, and crystal chemistry of natural pyrochlores . PhD thesis, Univ. New Mexico, Albuquerque.Google Scholar
Lumpkin, G.R. and Ewing, R.C. (1995) Geochemical alteration of pyrochlore group minerals: pyrochlore subgroup. Amer. Mineral., 80, 732–43.CrossRefGoogle Scholar
Lumpkin, G.R. and Ewing, R.C. (1996) Geochemical alteration of pyrochlore group minerals: betafite subgroup. Amer. Mineral., 81, 1237–48.CrossRefGoogle Scholar
Lumpkin, G.R. and Mariano, A.N. (1996) Natural occurrence and stability of pyrochlore in carbonatites, related hydrothermal systems, and weathering environments. Scientific Basis for Nuclear Waste Management XIX, MRS Symposium, 412 (Murphy, W.M. and Knecht, D.A., editors). Pittsburg, 831-8.Google Scholar
Lumpkin, G.R., Chakoumakos, B.C. and Ewing, R.C. (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. Amer. Mineral., 71, 569–88.Google Scholar
Maravic, H. von., Morteani, G. and Roethe, G. (1989) The cancrinite-syenite/carbonatite complex of Lueshe, Kivu/NE-Zaïre: petrographic and geochemical studies and its economic significance. J. African Earth Sci., 9, 341–55.CrossRefGoogle Scholar
McMahon, B. and Haggerty, S.E. (1979) The Oka carbonatite complex: magnetite compositions and the related role of titanium in pyrochlore. Kimberlites, Diatremes and Diamonds : their Geology, Petrology and Geochemistry. Proc. 2nd Int. Kimberlite Conf., 1 (Boyd, F.R. and Meyer, H.O.A., editors). American Geophysical Union, Washington.Google Scholar
Mineev, D.A. and Razenkova, N.I. (1962) On zoned crystals of pyrochlore from Vishneye Gor. Zap. Vses. Mineral. Obshch., 91, 8993. (in Russian).Google Scholar
Neuman, H. (1985) Norges mineraler. Norges Geologiske Undersokelse. Skrifter, 68.Google Scholar
Orcel, J. (1956) L'état métamicte. Bull. Soc. belge de Géologie, Paléontologie et d'Hydrologie, 65, 165–94.Google Scholar
Pearce, T.H. (1994) Recent work on oscillatory zoning in plagioclase. Pp. 313–49 in: Feldspars and Their Reactions (Parsons, I., editor). Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Pell, J. and Höy, T. (1989) Carbonatites in a continental margin environment-the Canadian Cordillera. Pp. 200–20 in: Carbonatites: Genesis and Evolution (Bell, K., editor). Unwin Hyman, London.Google Scholar
Petruk, W. and Owens, D.R. (1975) Electron microprobe analyses for pyrochlores from Oka, Quebec. Canad. Mineral., 13, 282–5.Google Scholar
Philippo, S., Naud, J., Declercq, J.P. and Feneau-Dupont, J. (1995) Structure refinement and X-ray powder diffraction data for kalipyrochlore (K, Sr, Na, Ca, H2O)2–m (Nb,Ti)2–x O6–w Y1–n , with 0 < m < 0.8, x ∼ 0.2, w = 0 and 0.2 < n < 1. Powder Diffraction, 10, 15.CrossRefGoogle Scholar
Polezhaeva, L.I. and Strel'nikova, L.A. (1980) Microprobe studies of pyrochlore as a source of new information on their typomorphism. Pp. 92–8 in: Metody Izucheniya Sostava i Svoistv Mineralov i Gornykh Porod Kol'skogo Poluostova (Belkov, I.V., editor). Akademii Nauk, Apatity. (in Russian).Google Scholar
Putnis, A., Fernandez-Diaz, L. and Prieto, M. (1992) Experimentally produced oscillatory zoning in the (Ba,Sr)SO4 solid solution. Nature, 358, 743–5.CrossRefGoogle Scholar
Reeder, R.J., Fagioli, R.O. and Meyers, W.J. (1990) Oscillatory zoning of Mn in solution-grown calcite crystals. Earth Sci. Rev., 29, 3946.CrossRefGoogle Scholar
Rucklidge, J.C. and Gasparrini, E.L. (1969) Specifications of a computer program for processing electron microprobe analytical data: EMPADR VII. Department of Geology, Univ. Toronto, Toronto, Canada.Google Scholar
Sage, R.P. (1988) Argor carbonatite Complex, District of Cochrane. Ont. Geol. Surv., Study, 41.Google Scholar
Secher, K. and Larsen, L.M. (1980) Geology and mineralogy of the Sarfartôq carbonatite, southern west Greenland. Lithos, 13, 199212.CrossRefGoogle Scholar
Shore, M. and Fowler, A.D. (1996) Oscillatory zoning in minerals: a common phenomenon. Canad. Mineral., 34, 1111–26.Google Scholar
Subramanian, M.A., Aravamudan, G. and Subba Rao, G.V. (1983) Oxide pyrochlores – a review. Prog. Solid State Chem., 15, 55143.CrossRefGoogle Scholar
Treivus, E.B. (1997) The oscillations of crystal growth rates at their formation in the regime of free convection of a solution; statistical investigation. Cryst. Res. Technol., 32, 963–72.CrossRefGoogle Scholar
Treivus, E.B. and Novikova, L.G. (1978) Use of the theory of random processes to study fluctuations in crystal growth rates. Soviet Physics: Crystallogr. 23, 495–7.Google Scholar
Twyman, J.D. (1983) The generation, crystallization, and differentiation of carbonatite magmas; evidence from the Argor and Cargill complexes, Ontario. PhD thesis, Univ. Toronto, Toronto, Canada.Google Scholar
Van Wambeke, L. (1970) The alteration processes of the complex titano-niobo-tantalates and their consequences. Neues Jahrb. Mineral. Abh., 112, 117–49.Google Scholar
Veen, A.H. van der (1963) A study of pyrochlore. Verhandelingen van het Koninklijk Nederlands geologisch mijnbouwkundig genootschap. Geologische serie, 22, 1188.Google Scholar
Viladkar, S.G. (1996) Geology of the Carbonatite- Alkalic Diatreme of Amba Dongar, Gujarat. GMDC Science and Research Centre, Ahmedabad, India.Google Scholar
Vronskii, A.V. and Basina, V.A. (1963) Use of micro-X-ray photography in the study of zoned pyrochlore. Nauchnye Trudy Irkutskii Gosudarstvennyi Nauchno-Issledovatel'skii Redkikh Metallov, 11, 44–7 (in Russian).Google Scholar
Wall, F., Williams, C.T., Woolley, A.R. and Nasraoui, M. (1996) Pyrochlore from weathered carbonatite at Lueshe, Zaire. Mineral. Mag., 60, 731–50.CrossRefGoogle Scholar
Williams, C.T. (1996) The occurrence of niobian zirconolite, pyrochlore and baddelyite in the Kovdor carbonatite complex, Kola Peninsula, Russia. Mineral. Mag., 60, 639–46.CrossRefGoogle Scholar
Williams, C.T. and Gieré, R. (1988) Metasomatic zonation of REE in zirconolite from a marble skarn at the Bergell contact aureole (Switzerland/Italy). Schweiz. Mineral. Petrogr. Mitt., 68, 133–40.Google Scholar
Williams, D.A. (1984) Paleozoic geology, Hawkesbury-Lachute area, southern Ontario. Ont. Geol. Surv., Map P2718.Google Scholar
Woolley, A.R. (1991) The Chilwa alkaline igneous province of Malawi. Pp. 377407 in: Magmatism in Extensional Structural Settings: The Phanerozoic African Plate (Kampunzu, A.B. and Lubala, R.T., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Yefimov, A.F., Yes'kova, Ye. M, Lebedeva, S.I. and Levin, V.Ya. (1985) Type compositions of accessory pyrochlore in a Ural alkali complex. Geochem. Int., 22, 68–75.Google Scholar