Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T23:45:58.912Z Has data issue: false hasContentIssue false

Petrology of low-temperature, ultrahigh-pressure marbles and interlayered coesite eclogites near Sanqingge, Sulu terrane, eastern China

Published online by Cambridge University Press:  05 July 2018

Yong-Feng Zhu*
Affiliation:
The Key Laboratory of Orogenic Belts and Crustal Evolution, School ofEarth and Space Sciences, Peking University, Beijing 100871, China
H.-J. Massonne
Affiliation:
Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstr. 18, D-70174 Stuttgart, Germany
Men-Fan Zhu
Affiliation:
The Key Laboratory of Orogenic Belts and Crustal Evolution, School ofEarth and Space Sciences, Peking University, Beijing 100871, China
*

Abstract

Marbles and interlayered coesite-bearing eclogites near the village ofSanqingge in the Sulu ultrahighpressure (UHP) terrane ofeastern China were studied to estimate their P-T evolution. Using garnet, omphacite and phengite as geothermobarometers, the coesite eclogites are calculated to have experienced P-T conditions of3.4 –3.7 GPa and ~600ºC (stage I), followed by decompression and a slight temperature decrease to 2.7–3.2 GPa and 520–560ºC respectively (stage II) and later to 2.6–2.8 GPa and ~500ºC (stage III). No water influx affected the eclogites until reaching amphibolite facies conditions of 0.5–1.3 Gpa and 595–685ºC (stage IV). As we interpret the occasional appearance ofcalcite with magnesite relics in the core as a reaction ofUHP dolomite and magnesite with Ca-rich fluids at stage IV to form CaCO3, the calculated pressure for stage I could be the maximum pressure experienced by these rocks. Thus, the crustal material ofthe Sanqingge quarry, originally sedimentary carbonates (now marbles) and interstratified basic tuffs (now eclogites), has been buried to a depth of ≥ 120 km at ~600ºC. This burial occurred in a subduction setting along a very low geotherm of 5–6ºC/km. The exhumation possibly occurred in the environment ofa subduction channel.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brady, J.B., Markley, M.J., Schumacher, J.C., Cheney, J.T. and Bianciardi, G.A. (2004) Aragonite pseudo- morphs in high-pressure marbles of Syros, Greece. Journal of Structural Geology, 26, 3—9.CrossRefGoogle Scholar
Brandelik, A. and Massonne, H.-J. (2004) PTGIBBS- an EXCEL™ Visual Basic program for computing and visualizing thermodynamic functions and equilibria of rock-forming minerals. Computer and Geoscience, 30, 909—923.CrossRefGoogle Scholar
Brunet, F., Bonneau, V. and Irifune, T. (2006) Complete solid-solution between Na3Al2(PO4)3 and Mg3Al2(SiO4)3 garnets at high pressure. American Mineralogist, 91, 211—215.CrossRefGoogle Scholar
Buob, A., Luth, R.W., Schmidt, M.W. and Ulmer, P. (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. American Mineralogist, 91, 435—440.CrossRefGoogle Scholar
Chen, J. and Xu, Z.Q. (2005) Pargasite and ilmenite exsolution texture in clinopyroxenes from the Hujialing garnet-pyroxenite, Sulu UHP terrane, Central China: a geodynamic implication. European Journal of Mineralogy, 17, 895—903.Google Scholar
Day, H.W. and Mulcahy, S.R. (2007) Excess silica in omphacite and the formation of free silica in eclogite. Journal of Metamorphic Geology, 25, 37-50.CrossRefGoogle Scholar
Ellis, D.J. and Green, D.H. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71, 13-22.CrossRefGoogle Scholar
Essene, E.J. (1983) Solid solution and solvi among metamorphic carbonates with applications to geologic thermobarometry. Pp. 77-96 in: Carbonates: Mineralogy and Chemistry (R.J. Reeder, editor). Reviews in Mineralogy 11, Mineralogical Society of America, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hacker, B.R., Wallis, S.R., Ratschbacher, L., Grove, M. and Gehrels, G. (2006) High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 25, TC5006, DOI: 10.1029/ 2005TC001937.CrossRefGoogle Scholar
Leake, B.E. and 21 others. (1997). Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61, 295-321.Google Scholar
Li, S.G., Jagoutz, E., Xiao, Y.L., Ge, N.J. and Chen, Y.Z. (1996) Chronology of Dabie-Sulu UHP terrane — I. Sm-Nd isotope system. Science in China (series D), 26, 249—257 (in Chinese).Google Scholar
Li, X.P., Zheng, Y.F., Wu, Y.B., Chen, F.K., Gong, B. and Li, Y.L. (2004) Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology, 148, 443—470.CrossRefGoogle Scholar
Liou, J.G., Hacker, B.R. and Zhang, R.Y. (2000) Into the forbidden zone. Science, 287, 1215 — 1216.CrossRefGoogle Scholar
Liou, J.G., Zhang, R.Y., Ernst, W.G., Rumble, D. and Maruyama, S. (1999) High-pressure minerals from deeply subducted metamorphic rocks. Pp. 33—96 in: Ultrahigh-Pressure Mineralogy: Physics and Chemistry of the Earth's Deep Interior (R.J. Hemley, editor). Reviews in Mineralogy 37, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Liu, F.L., Xu, Z.Q., Katayama, I., Yang, J.S., Maruyama, S. and Liou, J.G. (2001) Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project. Lithos, 59, 199—215.CrossRefGoogle Scholar
Liu, F.L., Gerdes, A., Liou, J.G., Xue, H.M. and Liang, F.H. (2006) SHRIMP U-Pb zircon dating from Sulu- Dabie dolomitic marble, eastern China: constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology, 24, 569—589.CrossRefGoogle Scholar
Luth, R.W. (2001) Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa. Contributions to Mineralogy and Petrology, 141, 222—232.CrossRefGoogle Scholar
Massonne, H.-J. (1995): Experimental and petrogenetic study of UHPM. Pp. 33—95 in: Ultrahigh- Pressure Metamorphism, (R.G. Coleman and X. Wang, editors). Cambridge Topics in Petrology, Cambridge University Press, Cambridge, UK.Google Scholar
Massonne, H.-J. and Kopp, J. (2005) A low-variance mineral assemblage with talc and phengite in an eclogite from the Saxonian Erzgebirge, Central Europe, and its P-T evolution. Journal of Petrology, 46, 355—375.Google Scholar
Okay, A.I. (1993) Petrology of a diamond- and coesite- bearing metamorphic terrain, Dabieshan, China. European Journal ofMineralogy, 5, 659—675.Google Scholar
Pouchou, J.L. and Pichoir, F. 1985 ‘PAP’ j(pZ) procedure for improved quantitative microanalysis. Pp. 104—106 in: Microbeam Analysis. San Francisco Press, San Francisco, California, USA.Google Scholar
Ravna, E.J. (2000) The garnet-clinopyroxene Fe2+- Mg geothermometer: an updated calibration. Journal of Metamorphic Geology, 18, 211—219.Google Scholar
Ravna, E.J. and Terry, M.P. (2004) Geothermobarometry of UHP and HP eclogites and schists - an evaluation of equilibria among garnet- clinopyroxene-kyanite-phengite-coesite/quartz. Journal ofMetamorphic Geology, 22, 579—592.Google Scholar
Rice, J.M. (1977) Contact metamorphism of impure dolomitic limestone on the Boulder aureole, Montana. Contributions to Mineralogy and Petrology, 59, 237—259.CrossRefGoogle Scholar
Sato, K. and Katsura, T. (2001) Experimental investigation on dolomite dissociation into aragonite + magnesite up to 8.5 GPa. Earth and Planetary Science Letters, 184, 529—534.CrossRefGoogle Scholar
Schmid, R., Franz, L. Oberhansli, R. and Dong, S. (2000) High Si-phengite, mineral chemistry and P—T evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern China. Geological Journal, 35, 185—207.CrossRefGoogle Scholar
Shatsky, V.S., Ragozin, A.L. and Sobolev, N.V. (2006) Some aspect of metamorphic evolution of ultrahigh- pressure calc-silicate rocks of the Kokchetav massif. Geologiya i Ģeofizika, 47, 105 — 118 (in Russian with English abstract).Google Scholar
Spear, F. (1993) Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineralogical Society of America Monograph, Chantilly, Virginia, USA, 799 pp.Google Scholar
Topuz, G., Okay, A.I. and Altherr, R. (2006) Partial high-pressure aragonitization of micritic limestones in an accretionary complex, Tavsanli Zone, NW Turkey. Journal of Metamorphic Geology, 24, 603—613.CrossRefGoogle Scholar
Xu, S.T., Liu, Y.C., Compagnoni, R., Rolfo, F., He, M.C. and Liu, H.F. (2003) New finding of microdiamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Science Bulletin, 48, 988-994.CrossRefGoogle Scholar
Xu, Z.Q. (2007) Continental deep subduction and exhumation dynamics: evidence from the main hole of the Chinese Continental Scientific Drilling and the Sulu HP-UHP metamorphic terrane. Acta Petrologica Sinica, 23, 3041-3053.(in Chinese with English abstract).Google Scholar
Xu, Z.Q., Zhang, Z.M. and Liu, F.L. (2003) Exhumation structure and mechanism of the Sulu ultrahigh- pressure metamorphic belt, Central China. Acta Geologica Sinica, 77, 432-450.(in Chinese).Google Scholar
Xu, Z.Q., Zhang, Z.M. and Liu, F.L., Yang, J.S., Tang, Z.M., Chen, S.Z., Cai, Y.C., Li, T.F. and Chen, F.Y. (2004) The structure profile of 0-2000 m in the main borehole, Chinese Continental Scientific Drilling and its preliminary deformation analysis. Acta Petrologica Sinica, 20, 53-72.(in Chinese).Google Scholar
Xu, Z.Q., Zeng, L., Liu, F., Yang, J., Zhang, Z., McWilliams, M. and Liou, J. G. (2006) Polyphase subduction and exhumation of the Sulu high- pressure-ultrahigh-pressure metamorphic terrane. Pp. 93-113 in: Ultrahigh-Pressure Metamorphism: Deep Continental Subduction. (B.R. Hacker, W.C. McClelland and J.G. Liou, editors). Special Paper 403, Geological Society of America, Boulder, Colorado, USA.Google Scholar
Yang, J.J. Godard, G., Kienast, J.R., Lu, Y. and Sun, J. (1993) Ultrahigh-pressure (60 Kbar) magnesitebearing garnet peridotites from Northeastern Jiangsu, China. Journal of Geology, 101, 541-554.CrossRefGoogle Scholar
Yang, J.S., Wooden, J.L., Wu, C.L., Liu, F.L., Xu, Z.Q., Shi, R.D., Katayama, I., Liou, J.G. and Maruyama, S. (2003) SHRIMP U-Pb dating of coesite-bearing zircon from the ultrahigh-pressure metamorphic rocks, Sulu terrane, east China. Journal of Metamorphic Geology, 21, 551-560.CrossRefGoogle Scholar
Yang, T.N. (2004) Retrograded textures and associated mass transfer: evidence for aqueous fluid action during exhumation of the Qinglongshan eclogite, southern Sulu ultrahigh pressure metamorphic terrane, eastern China. Journal of Metamorphic Geology, 22, 653-669.CrossRefGoogle Scholar
Ye, K., Cong, B. and Ye, D. (2000) The possible subduction of continental material to depths greater than 200km. Nature, 407, 734-736.CrossRefGoogle Scholar
Zhang, L.F., Ellis, D.J., Williams, S. and Jiang, W.B. (2002) Ultrahigh pressure metamorphism in western Tianshan, China, part II: evidence from magnesite in eclogite. American Mineralogist, 87, 861-866.CrossRefGoogle Scholar
Zhang, L.F., Ellis, D.J., Arculus, R.J., Jiang, W. and Wei, C. (2003a) Forbidden zone subduction of sediments to 150 km depth: the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China. Journal of Metamorphic Geology, 21, 523-529.CrossRefGoogle Scholar
Zhang, L.F., Ellis, D.J., Williams, S. and Jiang, W.B. (2003b) Ultrahigh pressure metamorphism in eclo- gites from the western Tianshan, China. Reply. American Mineralogist, 88, 1157-1160.Google Scholar
Zhang, Z.M., Xu, Z.Q. and Liu, F.L. (2002) Composition and metamorphism of the root of the southern Sulu orogen. Geological Bulletin of China, 21, 609-616.(in Chinese).Google Scholar
Zhang, Z.M., Xiao, Y.L., Liu, F.L., Liou, J.G. and Hoefs, J. (2005) Petrogenesis of UHP metamorphic rocks from Qinglongshan, southern Sulu, east-central China. Lithos, 81, 189-207.CrossRefGoogle Scholar
Zhao, W.X., Hu, Y.X. and Xia, F. (2004) K-rich lamellar exsolution clinopyroxene: Constraint on the depth of peridotite source at Zhimafang. Chinese Science Bulletin, 49, 711-715.CrossRefGoogle Scholar
Zhao, Z.Y., Wang, Q.C. and Cong, B. (1992) Coesite- bearing ultrahigh pressure metamorphic rocks from Donghai, northern Jiangsu province, eastern China: ‘foreign or in situ?’. Scientia Geologica Sinica, 1, 43-58.(in Chinese).Google Scholar
Zheng, Y.F., Fu, B., Gong, B. and Li, L. (2003) Stable isotope geochemistry of ultrahigh pressure meta- morphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth Science Reviews, 62, 105-161.CrossRefGoogle Scholar
Zhao, Z.Y. (2004). Dolomite decomposition structure in UHP marble: evidence for deep subduction (>200 km) of continental crust. 32nd International Geological Congress, Florence, Italy, Abstract volume, 153-157.Google Scholar
Zhao, Z.Y. (2005) Dolomite decomposition texture in ultrahigh pressure metamorphic marble: new evidence for the deep recycling of continental materials. Acta Petrologica Sinica, 21, 347-354.Google Scholar
Zhao, Z.Y. and Ogasawara, Y. (2002) Carbon recycled into the deep Earth: Evidenced by dolomite dissociation in subduction-zone rocks. Geology, 30, 947-950.2.0.CO;2>CrossRefGoogle Scholar
Zhao, Z.Y. and Massonne, H.-J. (2005) Discovery of pyrrhotite exsolution in apatite. Acta Petrologica Sinica, 21, 405-410.Google Scholar
Zhao, Z.Y. and Massonne, H.-J. (2007) Pyrrhotite exsolution texture of apatite in the main borehole of Chinese Continental Drilling (CCSD). Acta Petrologica Sinica, 23, 3249-3254.Google Scholar
Zhao, Z.Y., Massonne, H.-J. and Theye, T. (2007) Eclogites from the Chinese Continental Scientific Drilling borehole, their petrology and different P-T evolutions. Island Arc, 16, 508-535.CrossRefGoogle Scholar