Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T12:11:28.779Z Has data issue: false hasContentIssue false

Norilskite, (Pd,Ag)7Pb4, a new mineral from Noril'sk-Talnakh deposit, Russia

Published online by Cambridge University Press:  02 January 2018

A. Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
F. Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic
S. F. Sluzhenikin
Affiliation:
Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry Russian Academy of Sciences, Staromonetnyi per. 35, Moscow 119017, Russia
C. J. Stanley
Affiliation:
Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK

Abstract

Norilskite, (Pd,Ag)7Pb4 is a new platinum-group mineral discovered in the Mayak mine of the Talnakh deposit, Russia. It forms anhedral grains in aggregates (up to ∼400 μm) with polarite, zvyagintsevite, Pd-rich tetra-auricupride, Pd-Pt bearing auricupride,Ag-Au alloys, (Pb,As,Sb) bearing atokite, mayakite, Bi-Pb-rich kotulskite and sperrylite in pentlandite, cubanite and talnakhite. Norilskite is brittle, has a metallic lustre and a grey streak. Values of VHN20 fall between 296 and 342 kg mm–2, with a mean valueof 310 kg mm–2, corresponding to a Mohs hardness of ∼4. In plane-polarized light, norilskite is orange-brownish pink, has moderate to strong bireflectance, orange-pink to greyish-pink pleochroism, and strong anisotropy; it exhibits no internal reflections. Reflectancevalues of norilskite in air (Ro, Re' in %) are: 51.1, 48.8 at 470 nm, 56.8, 52.2 at 546 nm, 59.9, 53.5 at 589 nm and 64.7, 55.5 at 650 nm. Sixteen electronmicroprobe analyses of natural norilskite gave an average composition: Pd 44.33, Ag 2.68, Bi 0.33 and Pb 52.34, total99.68 wt.%, corresponding to the empirical formula (Pd6.56Ag0.39)∑6.95(Pb3.97Bi0.03)∑4.00 based on 4 Pb + Bi atoms; the average of eight analyses on synthetic norilskite is: Pd 42.95, Ag 3.87 and Pb 53.51, total 100.33wt.%, corresponding to (Pd6.25Ag0.56)∑6.81Pb4.00. The mineral is trigonal, space group P3121, with a = 8.9656(4), c = 17.2801(8) Å, V = 1202.92(9) Å3 and Z = 6. The crystalstructure was solved and refined from the powder X-ray diffraction data of synthetic (Pd,Ag)7Pb4. Norilskite crystallizes in the Ni13Ga3Ge6 structure type, related to nickeline. The strongest lines in the powder X-ray diffraction patternof synthetic norilskite [d in Å (I) (hkl)] are: 3.2201(29)(023,203), 2.3130(91)(026,206), 2.2414(100)(220), 1.6098(28)(046,406), 1.3076(38)(246,462), 1.2942(18)(600), 1.2115(37)(22.12,12.13), 0.9626(44) (06.12,60.12). The mineral is named for the locality, the Noril'sk district in Russia.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bhattacharya, B. and Masson, D.B. (1976) Composition dependence of the thermodynamic activity and lattice parameter of eta nickel-indium. Material Science and Engineering, 22(5) 133140.CrossRefGoogle Scholar
Czamanske, G.K., Kunilov, V.Y., Zientek, M.L., Cabri, L. I, Likhachev, A.P., Calk, L.C., Oscarson, R.L. (1992) A proton-microproprobe study of magmatic sulfide ores from the Noril'sk-Talnakh district, Siberia. The Canadian Mineraogist, 30, 249287.Google Scholar
Distler, YY, Grokhovskaya, T.L., Evstigneeva, T.L., Sluzhenikin, S.F., Filimonova, A.A., Dyuzhikov, O. A. and Laputina, I.P. (1988) Petrology of the Sulphide Magmatic Mineralization. Nauka, Moscow, pp. 232 [in Russian].Google Scholar
Ellner, M. (1981) Zusammenhang zwischen strukturellen und thermodynamischen Eigenschaften bei Phasen der Kupferfamilie in T10B4 — Systemen. Journal of Less Common Metals, 78, 2132.CrossRefGoogle Scholar
Genkin, A.D. (1968) Minerals of the Platinum Metals and their Associations in the Copper-Nickel Ores of the Noril'Sk Deposits. Nauka, Moscow, pp. 106 [in Russian].Google Scholar
Genkin, A.D. and Evstigneeva, T.L. (1986) Associations of platinum-group minerals of the Noril’sk copper-nickel sulphide ores. Economic Geology, 81, 12031212.CrossRefGoogle Scholar
Genkin, A.D., Distler, YY, Gladyshev, G.D., Filimonova, A.A., Evstigneeva, T.L., Kovalenker, V.A., Laputina, I.P., Smirnov, A.B. and Grokhovskaya, T.L. (1981) Sulphide nickel-copper ores of the Noril’sk deposits. Nauka, Moscow, pp. 234 [in Russian].Google Scholar
Havinga, E.E., Damsma, H. and Hokkeling, P. (1972) Compounds and pseudo-binary alloys with the CuAl2 (C16)-type structure. I. Preparation and X-ray results. Journal of Less Common Metals, 27, 169186.CrossRefGoogle Scholar
ICDD (2002) Powder Diffraction File (Frank McClune, editor). International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, PA 1907 3-3272, USA.Google Scholar
Inorganic Crystal Structure Database [ICSD] (2015) Fachinformationszentrum Karlsruhe (Germany) and National Institute of Standards and Technology (Maryland, USA).Google Scholar
Komarova, M.Z., Kozyrev, S.M., Simonov, O.N. and Lulko, V.A. (2002) The PGE mineralization of disseminated sulphide ores of the Noril’sk-Taimyr region. Pp. 547567 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (L.J. Cabri, editor). Canadian Institute Mining Metallurgy Petroleum, Special Vol. 54. Canadian Institute Mining, Québec, Canada.Google Scholar
Naldrett, A.J., Lightfoot, P.C., Fedorenko, V., Doherty, W. and Gorbachev, N.S. (1992) Geology and Geochemistry of Intrusions and Flood Basalts of the Noril'sk Region, USSR, with Implications for the Origin of the Ni-Cu Ores. Economic Geology, 87, 9751004.CrossRefGoogle Scholar
Norén, L., Withers, R.L. and Tabira, Y (2000) New B81-B82 phases in the Ni — In system. Journal of Alloys Compounds, 309, 179187.CrossRefGoogle Scholar
Nover, G. and Schubert, K. (1981) Crystal Structure of Ni13Ga3Ge6 . Zeitschrift für Metallkunde, 72, 2629.Google Scholar
Rodríguez-Carvajal, J. (2006) FullProf 2kRietveldProfile Matching & Integrated Intensities Refinement of X-ray and/or Neutron Data (powder and/or single-crystal). Laboratoire Léon Brillouin, Centre d'Etudes de Saclay, Gif-sur-Yvette Cedex, France.Google Scholar
Sarah, N., Alasafi, K. and Schubert, K. (1981) Kristallstruktur von Pd20Sn13, Pd6AgPb4 und Ni13ZnGe8 . Zeitschrift für Metallkunde, 72(7) 517520.Google Scholar
Sluzhenikin, S.F. (2011) Platinum-copper-nickel and platinum ores of Noril'sk region and their ore mineralization. Russian Journal of General Chemistry, 81(6), 1288-1301.CrossRefGoogle Scholar
Sluzhenikin, S.F. and Mokhov, A.V. (2015) Gold and silver in PGE-Cu-Ni and PGE ores of the Noril'sk deposits, Russia. Mineralium Deposita, 50, 465492.CrossRefGoogle Scholar
Zviagincev, O.E. (1940) New mineral species of the platinum group. Doklady Akademii Nauk SSSR, 26(8) 788791.Google Scholar