Hostname: page-component-7dd5485656-bt4hw Total loading time: 0 Render date: 2025-10-31T13:11:07.312Z Has data issue: false hasContentIssue false

Natromolybdite, Na2MoO4·2H2O, a new mineral from fumarole deposits of the Tolbachik volcano, Kamchatka, Russia

Published online by Cambridge University Press:  24 June 2025

Igor V. Pekov*
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Sergey N. Britvin
Affiliation:
Saint Petersburg State University, Saint Petersburg, Russia
Natalia N. Koshlyakova
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia
Nikita V. Chukanov
Affiliation:
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
Dmitry A. Ksenofontov
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Anna G. Turchkova
Affiliation:
Faculty of Geology, Moscow State University, Moscow, Russia
Pavel S. Zhegunov
Affiliation:
Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Petropavlovsk-Kamchatsky, Russia
*
Corresponding author: Igor V. Pekov; Email: igorpekov@mail.ru

Abstract

The new mineral natromolybdite, ideally Na2MoO4·2H2O, was found in the Arsenatnaya fumarole, Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. The associated minerals are halite, sylvite, aphthitalite, belomarinaite, powellite, hematite, sanidine, tilasite, johillerite, bradaczekite, badalovite, arsmirandite, wrightite, arsenatrotitanite, dmisokolovite, litidionite, rutile and cristobalite. Natromolybdite occurs as rectangular, octagonal or rhomb-like lamellar to thin-tabular crystals up to 40 μm across and up to 3 μm thick, in near-parallel, pile-like or rose-like aggregates and crystal crusts up to 0.2 mm across. It is transparent and colourless, with vitreous lustre. Dcalc is 2.573 g/cm3. The synthetic analogue of natromolybdite is optically biaxial (+), α = 1.575(2), β = 1.576(2), γ = 1.598(3) and 2Vmeas = 20(10)°. The chemical composition (wt.%, electron microprobe, H2O is calculated by stoichiometry) is: Na2O 25.51, K2O 0.66, SO3 1.04, MoO3 58.21, H2Ocalc 15.05, total 100.47. The empirical formula, calculated based on O = 6 apfu, is (Na1.971K0.034)Σ2.005(Mo0.968S0.031)Σ0.999O4·2H2O. Natromolybdite is orthorhombic, space group Pbca, a = 8.483(1), b = 10.577(2), c = 13.842(2) Å, V = 1242.0(2) Å3 and Z = 8. The nine strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 6.92(100)(002), 4.243(20)(200), 4.206(32)(022), 3.618(31)(202), 3.310(31)(220), 3.169(49)(131), 3.067(21)(114), 2.987(30)(222) and 2.681(15)(204, 311). Natromolybdite (IMA-accepted symbol Nmyb) is named for the chemical composition. It is a natural analogue of a well-studied synthetic sodium molybdate dihydrate.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Daniel Atencio

References

Atovmyan, L.O. and O.A, D’yachenko. (1969) The X-ray structure investigation of Na2MoO4(H2O)2 crystals. Zhurnal Strukturnoi Khimii, 10, 504507 [in Russian].Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Bykova, E.Y., Znamenskii, V.S., Kovalenker, V.A., Marsii, I.M. and Baturin, S.V. (1995) Associations and deposition conditions of molybdenum minerals in exhalation products of the Kudryavy volcano, Iturup, Kuril Islands. Geology of Ore Deposits, 37, 265273 [Geologiya Rudnykh Mestorozhdenii, 37, 265–273, in Russian].Google Scholar
Bykova, E.Y., Berlepsch, P., Kartashov, P.M., Brugger, J., Armbruster, T. and Criddle, A.J. (1998) Vergasovaite Cu3O[(Mo, S)O4][SO4], a new copper-oxy-molybdate-sulfate from Kamchatka. Schweizerische Mineralogische und Petrographische Mitteilungen, 78, 479488.Google Scholar
Capitelli, F., Selim, M.D. and Mukherjea, K.K. (2006) Synthesis and crystal structure determination of sodium molybdate dihydrate. Asian Journal of Chemistry, 18, 28562860.Google Scholar
Chaplygin, I.V. (2009) Ore Mineralization in High-Temperature Fumaroles of Kudriavy Volcano (Iturup, Kurily Islands). PhD thesis. IGEM, Moscow, 186 pp. [in Russian].Google Scholar
Dominic Fortes, A. (2015) Crystal structures of deuterated sodium molybdate dihydrate and sodium tungstate dihydrate from time-of-flight neutron powder diffraction. Acta Crystallographica, E71, 799806.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV. The compatibility concept and its application. The Canadian Mineralogist, 14, 498502.Google Scholar
Matsumoto, K., Kobayashi, A. and Sasaki, Y. (1975) The crystal structure of sodium molybdate dihydrate, Na2MoO4(H2O)2. Bulletin of the Chemical Society of Japan, 48, 10091013.Google Scholar
Mitra, R.P. and Verma, H.K.L. (1969) Crystal structures of dihydrates of sodium tungstate and sodium molybdate. Indian Journal of Chemistry, 7, 598602.Google Scholar
Nitta, E., Kimata, M., Hoshino, M., Echigo, T., Hamasaki, S., Shinohara, H., Nishida, N., Hatta, T. and Shimizu, M. (2006) High-temperature volcanic sublimates from Iwodake volcano, Satsuma-Iwojima, Kyushu, Southwestern Japan. Japanese Magazine of Mineralogical and Petrological Sciences, 35, 270281 [in Japanese with English abstract].Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.Google Scholar
Pekov, I.V., Zubkova, N.V. and Pushcharovsky, D.Yu. (2018b) Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal chemical review. Acta Crystallographica, B74, 502518.Google Scholar
Pekov, I.V., Agakhanov, A.A., Zubkova, N.V., Koshlyakova, N.V., Shchipalkina, N.V., Sandalov, F.D., Yapaskurt, V.O., Turchkova, A.G. and Sidorov, E.G. (2020a) Oxidizing-type fumaroles of the Tolbachik Volcano, a mineralogical and geochemical unique. Russian Geology and Geophysics, 61, 675688.Google Scholar
Pekov, I.V., Zubkova, N.V., Koshlyakova, N.N., Belakovskiy, D.I., Agakhanov, A.A., Vigasina, M.F., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2020b) Rhabdoborite-(V), rhabdoborite-(Mo) and rhabdoborite-(W): a new group of borate minerals with the general formula Mg12M 1⅓O6[(BO3)6-x(PO4)xF2-x] (M = V5+, Mo6+ or W6+ and x < 1). Physics and Chemistry of Minerals, 47, paper 44.Google Scholar
Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Koshlyakova, N.N., Turchkova, A.G., Sidorov, E.G. and Pushcharovsky, D.Yu. (2020c) Polymorphism and isomorphic substitutions in the Cu3(T 5+O4)2 natural system with T = As, V or P. Geology of Ore Deposits, 62(8), 803818 [Special Issue: Zapiski of the Russian Mineralogical Society].Google Scholar
Pekov, I.V., Britvin, S.N., Koshlyakova, N.N., Agakhanov, A.A., Belakovskiy, D.I., Chukanov, N.V., Ksenofontov, D.A. and Zhegunov, P.S. (2023) Natromolybdite, IMA 2022-130. CNMNC Newsletter 72. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.21Google Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. European Journal of Mineralogy, 32, 101119.Google Scholar
Vergasova, L.P. and Filatov, S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 7185.Google Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Yu. S. and Pushcharovsky, D. Yu. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749757.Google Scholar