Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T23:24:12.694Z Has data issue: false hasContentIssue false

Molecular processes on oxide surfaces studied by first-principles calculations

Published online by Cambridge University Press:  05 July 2018

M. J. Gillan
Affiliation:
Physics Dept., Keele University, Staffordshire ST5 5BG, UK
P. J. D. Lindan
Affiliation:
DCI, CCLRC Daresbury Laboratory, Warrington WA4 4AD, UK
L. N. Kantorovich
Affiliation:
Physics Dept., University College London, Gower St., London WC1E 6BT, UK
S. P. Bates
Affiliation:
Physics Dept., Keele University, Staffordshire ST5 5BG, UK

Abstract

First-principles quantum techniques based on density functional theory (DFT) have made important contributions to the understanding of oxide surfaces over the last four years. Important features of these calculations include: the use of periodic boundary conditions, which avoid the edge effects associated with the cluster approach; plane-wave basis sets, which make the calculation of ionic forces straightforward, so that both static relaxation and dynamical simulation can be done; and the approximate inclusion of electron correlation. A short introduction to DFT techniques is given, and recent work on the structure and energetics of a variety of oxide surfaces is presented. It is shown how the techniques can be used to study molecular and dissociative adsorption of molecules on oxide surfaces, with the emphasis on water and simple organic molecules. The growing importance of dynamical first-principles simulation in the study of surface chemical reactions is illustrated.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. and Tildesley, D. (1987) Computer Simulation of Liquids. Oxford University Press.Google Scholar
Andrews, S., Burton, N., Hillier, I., Holender, J. and Gillan, M. (1996) Molecular electronic-structure calculations employing a plane-wave basis – a comparison with Gaussian-basis calculations. Chem. Phys. Lett., 261, 521–6.CrossRefGoogle Scholar
Bachelet, G., Hamann, D. and Schlüter, M. (1982) Pseudopotentials that work - from H to Pu. Phys. Rev. B, 26, 4199–221.CrossRefGoogle Scholar
Bates, S., Kresse, G. and Gillan, M. (1997) A systematic study of the surface energetics and structure of TiO2(110) by . rst-principles calculations. Surf. Sci., 385, 386–94.CrossRefGoogle Scholar
Bates, S.P., Kresse, G. and Gillan, M. J. (1998) The adsorption of methanol on TiO2(110): a . rstprinciples investigation. Phys. Chem. B, 102, 2017-27.CrossRefGoogle Scholar
Bates, S.P. and Gillan, M.J. (1998) The adsorption and dissociation of ROH molecules on TiO2(110). Surf. Sci., in press.CrossRefGoogle Scholar
Becke, A. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38, 3098.CrossRefGoogle ScholarPubMed
Car, R. and Parrinello, M. (1985) Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett., 55, 2471–4.CrossRefGoogle ScholarPubMed
Causà, M., Dovesi, R., Pisani, C. and Roetti, C. (1986) Ab-initio Hartree-Fock study of the MgO(001) surface. Surf. Sci., 175, 551–60.CrossRefGoogle Scholar
Charlton, G., Howes, P., Nicklin, C., Steadman, P., Taylor, J., Muryn, C., Harte, S., Mercer, J., McGrath, R., Norman, D., Turner, T. and Thornton, G. (1997) Relaxation of TiO2(110)-(1 x 1) using surface x-ray diffraction. Phys. Rev. Lett., 78, 495–8.CrossRefGoogle Scholar
Cohen, M. and Heine, V. (1970) Applications of pseudopotentials. Solid State Physics, 24, 37.CrossRefGoogle Scholar
Colbourn, E., Kendrick, J. and Mackrodt, W. (1983) Defective non-planar surfaces of MgO. Surf. Sci., 126, 550–7.CrossRefGoogle Scholar
Cox, D., Fryberger, T. and Semancik, S. (1988) Oxygen vacancies and defect electronic states on the SnO2 (110)-1 x 1 surface. Phys. Rev. B, 38, 2072–83.CrossRefGoogle ScholarPubMed
DeVita, A., Gillan, M., Lin, J., Payne, M., Štich, I. and Clarke, L. (1992) Defect energetics in MgO treated by first-principles methods. Phys. Rev. B, 46, 12964–73.CrossRefGoogle Scholar
DeVita, A., Štich, I., Gillan, M., Payne, M. and Clarke, L. (1993) Dynamics of dissociative chemisorption -Cl2/Si (111)-(2 x 1). Phys. Rev. Lett., 71, 1276-9.Google Scholar
Fahmi, A., Minot, C., Silvi, B. and Causà, M. (1993) Theoretica analysis of the structures of titaniumdioxide crystals. Phys. Rev. B, 47, 11717.CrossRefGoogle Scholar
Feynman, R. (1939) The quantum-mechanical calculation of ionic forces. Phys. Rev., 56, 340.CrossRefGoogle Scholar
Gillan, M. (1991) Simulating matter from scratch. In Proc. NATO ASI on Computer Simulation in Materials Science, Aussois. (Mayer, M. and Pontikis, V., eds.) Kluwer, Dordrecht. p. 257.CrossRefGoogle Scholar
Gillan, M. (1997) The virtual matter laboratory. Contemp. Phys., 38, 115–30.CrossRefGoogle Scholar
Goniakowski, J. and Gillan, M. (1996) The adsorption of H2O on TiO2 and SnO2(110) studied by first principles calculations. Surf. Sci., 350, 145–58.CrossRefGoogle Scholar
Goniakowski, J., Holender, J., Kantorovich, L., Gillan, M. and White, J. (1996) Influence of gradient corrections on the bulk and surface properties of TiO2 and SnO2 . Phys. Rev. B, 53, 957.CrossRefGoogle ScholarPubMed
Guénard, P., Renaud, G., Barbier, A. and Gautier-Soyer, M. (1997) The relaxed surface structure of a-alumina. In Proc. MRS Spring Meeting 1996: Application of Synchrotron Radiation to Materials Science. In press.Google Scholar
Hamann, D., Schlüter, M. and Chiang, C. (1979) Normconserving pseudopotentials. Phys. Rev. Lett., 43, 1494.CrossRefGoogle Scholar
Heine, V. (1970) The pseudopotential concept. Solid State Physics, 24, 1.CrossRefGoogle Scholar
Hellmann, H. (1937) Einführung in die Quantenchemie. Franz Deuticke, Leipzig. p. 61.Google Scholar
Henderson, M. (1996 a). An HREELS and TPD study of water on TiO2(110) – the extent of molecular versus dissociative adsorption. Surf. Sci., 355, 151–66.CrossRefGoogle Scholar
Henderson, M. (1996 b). Structural sensitivity in the dissociation of water on TiO2 single- crystal surfaces. Langmuir, 12, 5093–8.CrossRefGoogle Scholar
Henrich, V. and Kurtz, R. (1981) Surface electronic structure of TiO2 – atomic geometry, ligand coordination, and the effect of adsorbed hydrogen. Phys. Rev. B, 23, 6280.CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W. (1964) Density functional theory of the inhomogeneous electron gas. Phys. Rev., 136, 864.CrossRefGoogle Scholar
Jones, C., Reeve, R., Rigg, R., Segall, R., Smart, R. and Turner, P. (1984) Surface-area and the mechanism of hydroxylation of ionic oxide surfaces. J. Chem. Soc. Faraday Trans. 1, 80, 2609.CrossRefGoogle Scholar
Jones, R. and Gunnarsson, O. (1989) The density functional formalism, its applications and prospects. Rev. Mod. Phys, 61, 689.CrossRefGoogle Scholar
Kantorovich, L. and Gillan, M. (1997) The energetics of N2O dissociation on CaO (001). Surf. Sci., 376, 169–76.CrossRefGoogle Scholar
Kantorovich, L., Holender, J. and Gillan, M. (1995) The energetics and electronic-structure of defective and irregular surfaces on MgO. Surf. Sci., 343, 221.CrossRefGoogle Scholar
Kantorovich, L., Gillan, M. and White, J. (1996) Adsorption of atomic oxygen on the MgO (100) surface. J. Chem. Soc. Faraday Trans., 92, 2075.CrossRefGoogle Scholar
Kohn, W. and Sham, L. (1965) A variation principles for the inhomogeneous electron gas. Phys. Rev., 140, 1133.CrossRefGoogle Scholar
Langel, W. and Parrinello, M. (1995) Ab-initio molecular-dynamics of H2O adsorbed on solid Mg. J. Chem. Phys., 103, 3240.CrossRefGoogle Scholar
Lin, J.-S., Qteish, A., Payne, M. and Heine, V. (1993) Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B, 47, 4174.CrossRefGoogle ScholarPubMed
Lindan, P., Harrison, N., Holender, J. and Gillan, M.J. (1996) First-principles molecular-dynamics simulation of water dissociation on TiO2 (110). Chem. Phys. Lett., 261, 246–52.CrossRefGoogle Scholar
Lindan, P., Harrison, N., Gillan, M.J. and White, J.A. (1997) First-principles spin-polarized calculations on the reduced and reconstructed TiO2 (110) surface. Phys. Rev. B., 55, 15919–27.CrossRefGoogle Scholar
Lindan, P.J. D., Harrison, N.M. and Gillan, M.J. (1998) Mixed dissociative and molecular adsorption of water on the rutile (110) surface. Phys. Rev. Lett., 80, 762.CrossRefGoogle Scholar
Mackrodt, W., Davey, R., Black, S. and Docherty, R. (1987) The surface relaxation of corundum. J. Cryst. Growth, 80, 441–6.CrossRefGoogle Scholar
Mackrodt, W., Simson, E.-A. and Harrison, N. (1997) An ab initio Hartree-Fock study of the electronexcess gap states in oxygen-de. cient rutile TiO2 . Surf. Sci., 384, 192200.CrossRefGoogle Scholar
Manassidis, I. and Gillan, M. (1994) Structure and energetics of alumina surfaces calculated from first principles. J. Amer. Ceram. Soc., 77, 335.CrossRefGoogle Scholar
Manassidis, I., DeVita, A. and Gillan, M. (1993) Structure of the (0001) surface of α-Al2O3 from first-principles calculations. Surf. Sci. Lett., 285, L517.Google Scholar
Manassidis, I., Goniakowski, J., Kantorovich, L. and Gillan, M. (1995) The structure of the stoichiometric and reduced SnO2 (110) surface. Surf. Sci., 339, 258.CrossRefGoogle Scholar
Nygren, M. and Pettersson, L. (1994) Theoretical modeling of metal oxides – influence of field strength on atomic oxygen adsorption and a simple model reaction. Chem. Phys. Lett., 230, 456.CrossRefGoogle Scholar
Payne, M., Teter, M., Allan, D., Arias, T. and Joannopoulos, J. (1992) Iterative minimization techniques for ab initio total-energy calculations – molecular-dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045.CrossRefGoogle Scholar
Perdew, J. (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 33, 8822.CrossRefGoogle ScholarPubMed
Perdew, J. (1991) Generalized gradient approximations for the inhomogeneous electron gas. In Electronic Structure in Solids ‘91. (Ziesche, P. and Eschrig, H., eds.) Akademie Verlag, Berlin.Google Scholar
Perdew, J. and Wang, Y. (1986) Accurate and simple density functional for the electronic exchange energy – generalized gradient approximation. Phys. Rev. B, 33, 8800.CrossRefGoogle ScholarPubMed
Perdew, J. , Chevary, J., Vosko, S., Jackson, K., Pederson, M., Singh, D. and Fiolhais, C. (1992) Atoms, molecules, solids, and surfaces – applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46, 6671.CrossRefGoogle ScholarPubMed
Phillips, J. and Kleinman, L. (1959) A new interpretation of the OPW scheme. Phys. Rev., 116, 287.CrossRefGoogle Scholar
Puchin, V., Gale, J., Shluger, A., Kotomin, E., Gunster, J., Brause, M. and Kempter, V. (1997) Atomic and electronic structure of the corundum (0001) surface: comparison with surface spectroscopies. Surf. Sci., 370,190200.CrossRefGoogle Scholar
Pugh, S. and Gillan, M. (1994) The energetics of NH3 adsorption at the MgO (001) surface. Surf. Sci., 320, 331.CrossRefGoogle Scholar
Pugh, S.K. (1996) First principles simulation of molecular adsorption at oxide surfaces. Ph.D. thesis, Keele University.Google Scholar
Ramamoorthy, M., King-Smith, R. and Vanderbilt, D. (1994a). Defects on TiO2 (110) surfaces. Phys. Rev. B, 49, 7709.CrossRefGoogle ScholarPubMed
Ramamoorthy, M., King-Smith, R. and Vanderbilt, D. (1994b). First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B, 49, 1672 CrossRefGoogle ScholarPubMed
Rappe, A., Rabe, K., Kaxiras, E. and Joannopoulos, J. (1990) Optimized pseudopotentials. Phys. Rev. B, 41, 1227.CrossRefGoogle ScholarPubMed
Rappe, A., Joannopoulos, J. and Bash, P. (1992) A test of the utility of plane waves for the study of molecules from . rst principles. J. Amer. Chem. Soc., 114, 6466.CrossRefGoogle Scholar
Refson, K.,Wogelius, R., Fraser, D., Payne, M., Lee, M. and Milman, V. (1995) Water chemisorption and reconstruction of the MgO surface. Phys. Rev. B, 52, 10823.CrossRefGoogle ScholarPubMed
Reinhardt, P. and Heß, B. (1994) Electronic and geometrical structure of rutile surfaces. Phys. Rev. B, 50, 12015.CrossRefGoogle ScholarPubMed
Salasco, L., Dovesi, R., Orlando, R., Causà, M. and Saunders, V. (1991) A periodic ab initio extended basis set study of α-Al2O3 . Mol. Phys., 72, 267–77.CrossRefGoogle Scholar
Scamehorn, C., Hess, A. and McCarthy, M. (1993) Correlation-corrected periodic hartree-fock study of the interactions between water and the (001) Magnesium-Oxide surface. J. Chem. Phys., 99, 2786.CrossRefGoogle Scholar
Scamehorn, C., Harrison, N. and McCarthy, M. (1994) Water chemistry on surface defect sites-chemidissociation versus physisorption on MgO (001). J. Chem. Phys., 101, 1547.CrossRefGoogle Scholar
Szymański, M. and Gillan, M. (1996) The energetics of adsorption of HCOOH on the MgO (100) surface. Surf. Sci., 367, 135–48.CrossRefGoogle Scholar
Tasker, P. (1988) The equilibrium surface structure of oxide materials. Adv. Ceram., 10, 176–89.Google Scholar
Tossell, J. (1995) Mineral surfaces: theoretical approaches. In Mineral Surfaces. (Vaughan, D. and Pattrick, R., eds.) Chapman and Hall. p. 61.Google Scholar
Vogtenhuber, D., Podloucky, R., Neckel, A. , Steinemann, S. and Freeman, A. (1994) Electronic structure and relaxed geometry of the TiO2 rutile (110) surface. Phys. Rev. B, 49, 2099.CrossRefGoogle ScholarPubMed
Zangwill, A. (1988) Physics at Surfaces. Cambridge University Press, Cambridge. p. 104 CrossRefGoogle Scholar